
What do I think about Conway's Law now? 16-Jan-06

(c) Allan Kelly & Lise Hvatum Page 1 of 16

What do I think about Conway's Law now?
Conclusions of a EuroPLoP 2005 Focus Group

Authors and focus group leaders:

• Lise Hvatum - hvatum1@sugar-land.oilfield.slb.com

• Allan Kelly - allan@allankelly.net

EuroPLoP is the annual European Patterns conference - more information here,
http://hillside.net/europlop/

As well as reviewing Patterns the conference hosts a number of “Focus Groups”
where participants discuss topics concerned with writing software, software
development in general and related topics.

In July 2005 Lise Hvatum and myself hosted over four hours of discussion over two
days on the subject of “Conway’s Law.” This paper describes the groups conclusions
and our own thinking on the subject at the end of the session and after some
reflection.

Conway’s Law is still open to debate.

We have proposed a second focus group for EuroPLoP 2006 on “Socio-Economic
forces effecting software development.”

Some names have been replaced by pseudonyms.

Allan Kelly, January 2006.

Background to this paper
This work captures the (possibly confused) thinking from the two focus
group leaders at EuroPLoP 2005 after the focus group was over and we had
summarized the outcome. We both went into the focus group thinking of
Conway’s Law as inevitable. Unless you heeded the organizational structure
when developing software you would be in trouble.

Thanks to a fascinating and vital group of people attending the focus group,
we were quickly and resolutely kicked out of our sandbox and for a period
felt we were flying in outer space. Not in control (we could not really stick to
the prepared model for how the focus group was to proceed, but then who
cares about pre-made plans anyway…) but completely fascinated with the
new discoveries the group was doing.

Defining Conway’s Law
When discussing Conway’s Law we need to be clear on which version we
are analysing. In addition to the original definition from the article of Melvin
Conway (Conway, 1968) there are a number of paraphrased versions of
Conway’s Law in use. In this document we will discuss the following three
versions:

What do I think about Conway's Law now? 16-Jan-06

(c) Allan Kelly & Lise Hvatum Page 2 of 16

• Raymond’s version:

“Conway’s Law prov. The rule that organization of the software and
the organization of the software team will be congruent; originally
stated as ‘If you have four groups working on a compiler, you’ll get a
4-pass compiler’.” (Raymond, 1996)

This version is the easiest to consider. It deals with a micro-situation.
Unless a conscious effort is made to avoid this situation it will happen.
The default position of many developers seems to be to divide the
problem into a number of chunks equal to the number of developers.
Although this may seem easy to manage these chunks are unlikely to be
even sizes and the resulting design is unlikely to be particularly good.
Sometimes this design is even a “make work” exercise because the
problem could be solved by a better design using fewer modules and
fewer programmers. This version of the law may be the best known and
the easiest to understand but it is actually the least interesting.

• Coplien and Harrison’s version:

“If the parts of an organization (e.g. teams, departments, or
subdivisions) do not closely reflect the essential parts of the product, or
if the relationship between organizations do not reflect the
relationships between product parts, then the project will be in trouble.
...

Therefore: Make sure the organizations is compatible with the product
architecture.” (Coplien and Harrison, 2004)

The pattern applies to the macro environment, and in short tells you to
“align architecture with organization”. System architecture will be
influenced by social and economic factors, of which the true (not formal)
communication structure in the organization is the strongest. To apply the
pattern, you are faced with a number of questions on how to implement it;
what exactly to build, where to start, and not the least how to change an
organization to support the product architecture.

• Conway’s original form of the law:

“organizations which design systems (in the broad sense used here) are
constrained to produce designs which are copies of the communication
structures of these organizations.” (Conway, 1968)

This version is the most interesting version and is compatible with Parnas’
“module as a responsibility assignment” (Parnas, 2001) - if you are
responsible for a module you should communicate with those who you
affect and should be talked to by those who use your code. If you have a
high communication bandwidth (e.g. sit next to each other) your interface
will be informal, if you are physically separate and communicate little you
may publish a formal API.

What do I think about Conway's Law now? 16-Jan-06

(c) Allan Kelly & Lise Hvatum Page 3 of 16

In writing up these notes the authors also became aware of the work of
Herbsleb and Grinter (1999). This qualitative study considers a case in
which developers have problems with modules with which they need to
interface and for which they have no contact with the developer. Their case
study exposes the fallacy of written documentation for this purpose.

Therefore, it is a foolish organization that attempts to limit communication
between those who need to interface. However, it may not be obvious to an
organization that two individuals or groups need to communicate so they
may break this link without realising it.

A new case study
One of the session participants, Keith Braithwaite, introduced the group to a
case study in which he claimed Conway’s Law had been broken. The full
case study is contained as an appendix.

In this case a UK based company had expanded overseas and established
local development teams. Initially these teams localised the software but
over time they each maintained their own version of the software and the
shared, single, code base started to break down as each team operated with
their own copy of the source.

This scenario is completely compatible with Conway’s Law.
Communication within each team was better than between teams so the
system architecture fragmented into multiple versions of the code base - one
per team.

As the fragmentation increased so did costs and eventually the senior
management decided to break the cycle. An active decision was made to
support only one code base. The company decided to adopt a variant of
Extreme Programming, which would be adopted by all teams. Some teams
where disbanded altogether and those that remained where brought together
to create new communication channels.

Once the team members had all met and been trained in the new
methodology they returned to their development centres - now reduced to
three, UK, West Coast USA and Singapore. These teams adopted the new
working style and created a new communication path by participating in
thrice daily hand-over meetings on video link up - once at the start of each
teams work day and once at the end.

To date the new way of working has been successful and there is a single,
shared, code-base.

At least superficially this study presents a case where Conway’s Law was
broken. The teams had been overcome by communication paths that created
an architecture. Management had intervened and changed the architecture to
overcome the power of Conway’s Law.

Herein lies a lesson for organizations outsourcing and/or off-shoring: you are
inserting a barrier between two groups, you will need to replace informal
communication structures either with formal structures or technology which
allows new communications paths to replace the old.

What do I think about Conway's Law now? 16-Jan-06

(c) Allan Kelly & Lise Hvatum Page 4 of 16

Lesson #1: Informal communication is important in developing software.
If a barrier to informal communication is created (e.g. outsourcing or
off-shoring) it is necessary to compensate for the barrier. Failure to do
so will affect the software architecture.

The system concept
Conway does give us a “get out of jail free” card:

“the need for communication depends on the system concept in effect at
the time”

By changing the system concept we can change our system and re-direct our
communications. For example, a team focused on performance will
communicate with different people to a team focused on deadline.

If we return to the ABC case study we see we can also explain the case study
in terms of the system concept. Management decided to intervene, they
changed the system concept - in part through the adoption of a new
methodology - and remade the communication channels - some where
removed completely, others where improved (personal contact as in the
Herbsleb and Grinter study) and new ones introduced (e.g. video handovers).

One question remains: Does ABC still obey Conway’s Law?

On the one hand it broke the law because it escaped the tyranny of the law.
On the other hand, the new situation still obeys Conway’s Law, architecture
is still following communication but we have changed the communication
path.

Lesson #2: We are not powerless; we can intervene and change the
system concept. Removing barriers requires an active intervention.

1960’s Context
It became clear during the focus group discussion that the organizations that
Conway was thinking of were typical for the 1960’s. They had a strong
hierarchy, and the communication structure was basically a mirror of the
reporting structure. Of course these organizations still exist today. The
defence industry, public offices, and those who insist on sticking to waterfall
development methodologies are good examples.

But many modern software development organizations allow for completely
free communication independent of reporting lines. Developers are actually
expected to contact whoever they need to for their work. Working across
geographic locations and time zone do impose some boundaries.

At the same time communication costs have fallen, not only does every
developer have a phone on their desks but they probably have a cell-phone,
instant-messenger, global e-mail, conference calls and video links. Not only
has the variety of mediums increased but the cost has fallen by an order of
magnitude.

What do I think about Conway's Law now? 16-Jan-06

(c) Allan Kelly & Lise Hvatum Page 5 of 16

The proliferation of plentiful - and cheap - communication channels does not
guarantee communication but they are a pre-requisite for good
communication. As both the ABC and Herbsleb and Grinter studies show
these channels are more frequently used when individuals meet and know the
other individuals.

Lesson #3: Give developers good communication links and ensure they
meet one another - especially those who are based remotely.

This echo’s Coplien and Harrison’s Face to Face Before Working Remotely
(Coplien and Harrison, 2004).

The Homomorphic force
Conway also gives us the homomorphic force:

“This kind of structure-preserving relationship between two sets of things
is called a homomorphism.” (Conway, 1968)

The idea of homomorphism is established in mathematics (see
http://en.wikipedia.org/wiki/Homomorphic) and the authors believe it can be
seen in other fields (e.g. biology, social science) but further research is
required to validate this claim.

This is the reason system designs become a copy of something else. We
need to understand this force in more detail - this is an area of research.

The homomorphic force is in effect the thing that many people are actually
referring to when they say “Conway’s Law” - it is clear that Raymond’s
version of “Conway’s Law” is actually describing the homomorphic force.

Once we accept this we can now understand Conway’s 1968 piece in three
layers:

• Lowest level: Conway introduces us to the Homomorphic force and
describes some of its effects.

• Middle: Conway’s broader argument encompassing the homomorphic
force, division of a system along communication paths (akin to Parnas’
responsibilities) and effect of the system concept.

• Top: Conway’s entire article, which adds his 1968 context, his
foreshadowing of Brooks Law (Brooks, 1995) and his solution in calling
for “lean and flexible [organizations].”

It would also appear that the homomorphic force has an additional
characteristic that makes it extremely powerful: it is self-reinforcing.

We know already that software architectures are difficult to change, as are
organizations. We can reason that the two are mutually supporting. Once
software takes on the characteristics of the wider organization it will serve to
reinforce the organizational structures, which in turn will strengthen the
software architecture.

What do I think about Conway's Law now? 16-Jan-06

(c) Allan Kelly & Lise Hvatum Page 6 of 16

Barriers that are created this way will be extremely difficult to remove. An
attempt to change the architecture will conflict with the organizational
structures and vice-versa.

Because of the self-reinforcing nature of the homomorphic force
organizations will still copy themselves in code unless this and other forces
are actively considered and managed (i.e. used or countered).

Beyond homomorphism and communication
Given the power of the homomorphic force it is important we seek to
increase our understanding of these other forces and how they affect our
designs.

Homomorphism is not the only force which effect system design, there are
others. Nor are communication paths the only factors that may be reflected
through the homomorphic force into system architecture. Unfortunately the
homomorphic force is so powerful that other forces may be ignored and left
unbalanced. This can cause problems later in the system history.

Other forces may include:

• Financial forces, e.g. in an attempt to keep its wage bill low a company
may only hire recent graduates to develop software, consequently many
practices of mature developers are absent. Use of outsourcing IT partners
and/or global distribution of team members create new challenges and
strongly affects the communication structures.

• Political forces, large corporate will often mandate a particular OS or
language be used on all projects.

• Organizational forces, e.g. how democratic or bureaucratic the
organizational culture is. Bureaucracy may interfere with communication,
financial decision-making, recruitment, training and any number of other
factors.

• Communication forces, where the reduced cost of communication has
enabled quick and easy access to a much larger number of people
involved on many levels and in numerous roles with a project, while the
ease of communication means that it is hard to control who talks to who
even if the desire to control is there from the management.

• Cultural forces, e.g. the relationship between younger engineers and
management has changed considerably since 1968. This impacts
communication but also decision making and the architectural freedom of
the development team.

We could list more forces or go more in detail, but choose not to since it does
not reflect the work of the focus group. One thing the group did agree on was
that technical considerations play a relatively minor role in the design of a
software system compared to external forces. What the discussion on other
forces told us is that organizations have changed since 1968 (or at least some
have, or maybe they are new and different organizations). This is changing
the context and the relative strength and effect of the dominant forces.

What do I think about Conway's Law now? 16-Jan-06

(c) Allan Kelly & Lise Hvatum Page 7 of 16

It would seem that when Conway wrote his article in1968, a number of
forces where all pushing in the same directions, for example, hierarchy,
bureaucracy and expensive communication. Many of these forces have
changed since 1968. Forces that were strong are now weak (e.g. hierarchy)
while forces that where weak are now strong (e.g. corporate democracy.)
Other forces have changed direction, e.g. communication as discussed above.

Of course these forces will vary from company to company and department
to department. One may still find highly hierarchical organizations (e.g. the
civil service) but they are no longer the rule.

We should also seek to increase our understanding of the user role in system
design. This is particularly important in the contexts of ERP, organizational
change and markets. The authors hope to explore this dimension in a future.

Homomorphic designs
Designs that are overwhelmed by the homomorphic force can be termed
“Homomorphic designs.”

Unless the organization is structured to support an optimal design and is
willing to change as the architectural needs are changing (which we believe
is rare), homomorphic designs are most likely not optimal. Better designs can
be produced if the organization makes an effort to consider other forces -
both in software and process design.

Lesson #4: If we do not choose to actively break homomorphism it will
take control of the architecture, so we must actively choose to design
systems that break homomorphism.

The problem is: homomorphism is a very strong force but it does not
result in good solutions because it does overwhelm other forces.

(For a few (dysfunctional) organizations it may be that embracing the
homomorphic design and allowing the organization and software to mirror
each other may actually be an improvement over the current status quo.)

Structure is about barriers and balancing forces. Designing software is about
choosing where to place barriers; homomorphism will reduce your freedom
in making balanced choices in where to place these barriers. Once in place
these barriers grow in strength, but some barriers will be in the wrong place
and will become obstacles.

People will also create barriers themselves: to protect themselves, to protect
their teams and avoid anxiety - sometimes called social defences. In a case
study Watsell describes how software developers can create defences:

“The argument is, thus, that methodology, although its influence may be
benign, has the potential to operate as a ‘social defence’, i.e. as a set of
organizational rituals with the primary function containing anxiety. The
grandiose illusion of an all-powerful method allows practitioners to deny
their feelings impotent in the face of the daunting technical and political
challenges of systems development.” (Wastell, 1996)

What do I think about Conway's Law now? 16-Jan-06

(c) Allan Kelly & Lise Hvatum Page 8 of 16

Obviously, such barriers often become obstacles.

We, as system designers, need to know when to create a barrier and when to
remove one, when to reinforce one and when to weaken one. To do this we
work in two domains: the technical and the social.

The ABC case demonstrates this. The geographically different groups built
their own defensive barriers - in code. Eventually the manager decided to
blow up the barricades - both social and technical behind which people were
working. Simultaneously they introduced new communication channels that
allowed technical changes.

The same is true in the Herbsleb and Grinter study: after engineers had
visited the other site things improved because barriers had been removed.

In complex organizations it can be difficult to tell which is which. It can be
difficult to tell which is a barrier preventing change and which is enhancing
the design. Removing barriers can destroy designs and loose knowledge.

This is the mistake made by Business Process Re-engineering. Barriers were
removed and new ones added and all the time knowledge (particularly tacit
knowledge) was lost.

One way around this is to create a culture where change is accepted and
understood. This means a culture that learns. Not just the individual but also
the team, the organization. A learning team will be a flexible one, a team
driven to learn and improve will be lean - we know this from Toyota
(Kennedy, 2003, Womack et al., 1991, Cusumano and Nobeoka, 1998).

And this is what Conway calls for: organizations that are lean and flexible.

Conway was right but things are more complicated than he thought. In the
twenty-first century we need a new understanding of his argument for a new
context.

What do I think about Conway's Law now? 16-Jan-06

(c) Allan Kelly & Lise Hvatum Page 9 of 16

Appendix A: ABC Case study
ABC began as a British company based in the UK. They proceeded to own
offices in the US, in Latin America (sales only), South Africa, Singapore and
Australia.

The development organization was structured as follows: a “Global Team”
group in the UK doing the core system; this was the oldest and most
experienced development team, and they were close to experienced
customers. The other sites had satellite development teams doing extensions,
branding and adoptions for local markets. As an example, Singapore had to
deal with several languages and became good at localization. South Africa
had infrastructure problems and had to duplicate databases. The team in
Australia used different technology and developed their own functionality.

After a few years, started to observe that work was duplicated, the cost was
high, and it was difficult to upgrade to new core updates. As a reaction, the
“Global Team” plus local team in the UK started to put up barriers to stop
changes in the other locations. Feedback loops with the other teams going on
to incorporate local changes into upgrades. Manager felt he was paying 5
times for the same feature, and other locations could not benefit from a
feature developed at a certain location.

The manager asked the Head of the Global Team to “fix” it. The decision
was made that there is no local ownership. There is one code base. Each
market gets the advantage of all development independent of location. No
cracks because of local development.

To implement, all developers were brought together for 6 weeks (about 30
people). A new architecture was put in place that was a better fit for the
product. This architecture reflects the problem domain and not the structure
of the development team.

Shortly afterwards the company found it necessary to reduce the size of the
team with some positions becoming redundant. Preference was given to
retain individuals who would fit best with the new collaborative
environment. Of those who left the team some where retained on other
projects in the development group.

Today all the teams are working on a shared code base. If one team wants to
make changes:

They just do it – and if it is not good other teams will remove the change

At the end of each day there is a videoconference with other teams, due to
the time difference this works like a sliding window around the world

For big changes they do a position paper on the team wiki. There is no lead
architect. The global team (20+ people) will go on until they reach consensus
in the discussion.

The system that is being built is deployed in live situations.

The top level of management is where the decisions meet.

What do I think about Conway's Law now? 16-Jan-06

(c) Allan Kelly & Lise Hvatum Page 10 of 16

Needed someone from the outside to do the change.

Appendix B: Further comments
When this report was complete the authors circulated it to the focus group
participants and asked for additional comments for inclusion. We also asked
Neil Harrison and Jim Coplien, authors of the Conway’s Law pattern for
comments.

Kevlin Henney and Keith Braithwaite, both of whom participated in the
focus group, and Neil Harrison responded and we include their comments
here.

Comments from Kevlin Henney
I first came across Conway's Law in the New Hacker's Dictionary(Raymond,
1996), where it was presented as "the rule that the organization of the
software and the organization of the software team will be congruent". I later
came across it again presented as a pattern (Coplien, 1995). And then just a
couple of years ago I had the good fortune to read the original paper by
Conway (Conway, 1968), followed by the more detailed pattern write up in
Organizational Patterns of Agile Software Development (Coplien and
Harrison, 2004).

There have been a few things that have troubled me about the various billings
of Conway's Law, and many of them simply come down to the (mis)use of
the word "law". One sense of the word "law" is a strong rule that is agreed
upon in some social structure, with the implication of judgement and penalty
for any violation. Another common sense is in the sense of physical law, for
which there is no concept of violation. It is quite clearly possible to break
Conway's Law both with and without penalty, depending on other factors.
This suggests that the term "law" is quite the wrong one, and what is being
described here is a force. It also means that it doesn't make as much sense to
talk about breaking a force as it does a law. Admittedly, Conway's Force
sounds less catchy, but does appear more accurate.

When characterised as a force many things fall into place. It is not the sole
determinant of software architecture, so in shaping an architecture it is one
consideration of many. Its overall effect will relate to the strength of the
other forces at play. This seems more in keeping with how development
projects are observed to unfold. If the force exerted by the organisational
communication paths were the only force, then there would be nothing more
to software architecture than the communication paths in the organization. Of
course, this is not what is observed.

For example, in the limit, a one-person project would produce, according to a
strict interpretation of the force as a law, no modular structure in its software
architecture.

Another example that should result in a flat architecture would be a small,
close-knit team where code is shared transparently and effectively. That this
is not always the case demonstrates, by simple contradiction, that what is at

What do I think about Conway's Law now? 16-Jan-06

(c) Allan Kelly & Lise Hvatum Page 11 of 16

play here is no law. That this is sometimes the case does, however, highlight
that there is something important here that cannot be ignored: organisational
structure is a necessary (but not sole) consideration in software architecture.
Hence why it makes more sense to look on it as a force rather than a law. It is
a force that is not hard to observe in action, but it is also easy to see it come
into conflict or sympathy with other forces.

From a pattern perspective, this idea of a force makes perfect sense:
conflicting forces make up the tension in a problem that the proposed
solution is intended to resolve. However, this perspective does mean that
Conway's Law (Coplien and Harrison, 2004, Coplien, 1995) as a pattern is
named after a problem force rather than a solution structure. This in turn
highlights another issue: as a pattern, if what have come to know as
Conway's Law is a force, what exactly is the solution?

The earlier version of the pattern (Coplien, 1995) was also documented with
two synonyms: Organization Follows Architecture and Architecture Follows
Organization. These are very descriptive, especially for someone who may
be unfamiliar with the Conway connection, and I have found them helpful
when reading and referring to the pattern. However, these two names also
describe two quite distinct solutions with quite different characteristics. The
first suggests that the architecture of the software dictate the structure of the
organization around it, and so the organisation is considered to be
subordinate to the software. The second suggests the converse. The advice is
quite different in each case, although both cases pursue a common cause of
architecture-organisation alignment. So is this perhaps two patterns rather
than one?

The pattern's solution text is a little ambivalent, suggesting that the important
feature is that the organisation and software architecture are aligned, and that
a secondary consideration is that the software should probably, but not
necessarily, drive the organisation. This description is also in part true of the
later documentation of the pattern (Coplien and Harrison, 2004), but
importantly this later description also states that "care should be taken to
align the structure of the architecture with the structure of the organization by
making piecemeal changes to one or the other". And in this statement lies an
apparent resolution: there are (at least) three patterns at play here.

The root pattern we can name Align Architecture and Organization, and this
captures many of the points that the original versions of the pattern focus on
as issues and benefits.

To Align Architecture and Organization we can make changes so that
Organization Follows Architecture, or so that Architecture Follows
Organization, or both, responding to feedback from each previous change
and other factors at play in the architecture and organization. This separation
makes clearer the distinct and complementary approaches at work here,
rather than including them in the slipstream of the root pattern. Hence, there
is more scope for discussing the interaction and choice of pattern application
in a given situation, and I believe that such clarity and generatively is no bad
thing.

What do I think about Conway's Law now? 16-Jan-06

(c) Allan Kelly & Lise Hvatum Page 12 of 16

Comments from Neil Harrison
First, I have no feedback on the report itself; as far as I can tell, it is an
accurate report of what went on in the workshop.

Naturally, I do have feedback on the content of the workshop. Whether you
add or change your report based on my comments is entirely up to you.

(Authors note: We chose to leave the text unchanged.)

By nature, workshops tend to be an exchange of ideas. Opinions are often
given without much evidence to back them up. This is appropriate. This
workshop was no exception. In particular, one person presented a single case
study which was supposed to call Conway's law into question.

Conway's law has been around for over 35 years. We have seen it over and
over again in our studies. And we aren't alone. One counterexample does not
invalidate a widely substantiated theorem. But even more to the point, when
I read the case study, it didn't contradict Conway's law at all! In fact, it
reinforced it. Note what happened:

Separate teams worked on separate parts of the system (Conway's law),
until the architecture deteriorated enough that they had to do something
(note the lack of Architect Controls Product.) Then they redid the
architecture by basically creating a single blob. And then - this is
important - they redid the teams by bringing everyone together (Lock Em
Up Together, Face to Face Before Working Remotely). After the team
size was reduced they were down to 15 or so people. That's about the size
of one team...

Note that Lock Em Up Together is about forging team unity as much as
forging architectural unity.

Now it's hard to have a single team that is geographically distributed; there is
a natural tendency to form local teams. And local teams will eventually
cause architectural drift. The company knew this, so they took actions to
prevent it. They have daily meetings, which enforce the single team concept.
They are bucking natural tendencies, so they have to take overt, constant,
action against it.

This will be hard for them to sustain.

By the way, note also that there is no lead architect, and the top level of
management is where the decisions meet. This means either that the top
manager is the de facto architect, or they again have lack of Architect
Controls Product. Either way, that sounds potentially troublesome.

Other stuff:

There appeared to be general agreement in the workshop that things have
changed since the 1960s; that teams have become less hierarchical, that
communication channels have increases, and that Conway's Law was most
appropriate for the old teams of the 1960s. So it needs rethinking in the
modern world.

What do I think about Conway's Law now? 16-Jan-06

(c) Allan Kelly & Lise Hvatum Page 13 of 16

These are opinions. (Again, a workshop is all about discussing opinions, so
this is perfectly all right.) My opinions on the above are that I disagree with
basically all of them.

In the 1960's, many software developments were small; relatively few were
large. Small developments had small teams with flat (or nonexistent)
hierarchies. Now, many software developments are still small, in terms of
people. Relatively few are large. Small developments have small teams, and
large ones have large teams.

Communication has indeed increased. At the same time, we have lost much
of the advantage by distributing teams, which decreases the quality of
communication. We distribute teams in ways no sane organization in the
1960's would have. At best, it's a wash, but we may be even worse off than
we were before, in terms of the quality of information flow.

So I guess I disagree with your last two sentences: I think that the changes
that have happened in the last 35 years pale in comparison to the things that
have remained the same...

Comments from Keith Braithwaite
I first came across Conway's Law while pursuing a Master's degree in
Software Engineering, around a decade ago. During the following ten years I
somehow did not notice that I had arrived at an opposite understanding of the
"Law" from most observers--until attending Allan's and Lise's workshop
where I discovered to my surprise that I was the only person there who
considered that the Law described a failure mode. Rather, in my mind, after
the fashion of the laws of Brooks and Parkinson. Yes, the phenomenon
described by Conway's Law occurs, it even is widespread, but it's neither
inevitable nor desirable. That was my view. Yet the common view amongst
the workshop attendees was that the Law described an outcome so desirable
that even if it did not arise naturally (as it was almost bound to do), then it
should be induced. Puzzling, stimulating and challenging!

It so happens that my first work as a professional programmer was to do with
compilers, and so the common shorthand form of the law, suggesting that
four teams will build a four-pass compiler very obviously to me described a
pathological situation, in which a far-reaching technical decision
("architecture" indeed) was driven by an artefact of staffing. And so with the
Law more broadly understood: what are the chances that the reporting lines
of a development organisation map onto the architecture of a system to be
built in a way most beneficial to the customer? Why would a competent
development organisation allow such a constraint to apply.

In preparing for the workshop, I read Conway's original paper. It asserts that
there will be a 1:1 mapping between the org. chart of the organisation
building a system and a graph of the information flows within the system.
We did see this in operation at ABC: a hub-and-spoke organisation of the
business lead to a system built from a core component with local additions.

What do I think about Conway's Law now? 16-Jan-06

(c) Allan Kelly & Lise Hvatum Page 14 of 16

This failed for us, so we chose to do something different. Amongst other
things, we chose to decouple the architecture of the system from the structure
of the business, in the hope that they could then both find their best
respective forms.

In Conway's model a developer A working on a module can only execute
work to agree an interface with another module worked on by developer B by
appeal to the "least common manager" of A and B, C. And thus the
homomorphism described arises, with the dataflow between the two modules
corresponding to the reporting lines from A and B to C. Again: why would
you put up with such overhead? At ABC we do not. If a developer working
on a story (the implementation of which might cut across multiple modules)
needs to agree an interface (or anything else) with another developer, then
they simply do so, peer-to-peer. The least common manager likely won't,
doesn't need and probably doesn't want to, know about it. The developers
can, if they are in the same site, simply talk to each other. If they are in
separate sites, they can communicate with one another freely via the (single)
code base, via email, via the team wiki, via the twice-daily videoconference,
via distributed pair-programming sessions. At the time of writing, this
practice has been in place for almost two years, and continues to work well.
Meanwhile, the system architecture is what(ever) it needs to be.

During the discussion of this case in the workshop it was suggested that this
was indeed Conway's Law in action! One team, one code base, therefore
homomorphism. If this is Conway's Law, then I would suggest that the law is
content free. The suggestion that "architecture is still following
communication" in the ABC case simply makes no sense to me.

Our single global team is not atomic, rather it has an internal structure--three
regional sub-teams, each with a local line manager who reports to the group
CTO. Communication between the three regional groups is structured around
the twice daily videoconferences. Our code base similarly has structure. It is
built out of several relational schemas, a J2EE container full of beans, a
substantial library of POJO's, servlet engine and contents, Velocity templates
(and not just for web presentation), an extensive MVP framework, O-R
mapping layer, stand-alone Java applications, Ruby on Rails web apps, stand
alone servlets, etc. etc. But there's no partition of anything in the code into
three to match our three local groups of developers. And there is no hub-and-
spoke (CTO<->regions), and there is no three layers (CTO<->Regional Head
of Development<->Developer).

There continues to be no architect (and the CTO is most definitely not one).
Team members around the world continue to spike, lobby their peers for, and
execute architectural change as and when they see fit, to better serve their
customers and users.

Our architecture does not follow our organization, nor vice versa other than
in the most trivial ways. For instance, we have RDBMS's, and we have
DBAs to run them, but a developer can institute a schema change, or
introduce a new schema even, without consultation via the least common
manager.

What do I think about Conway's Law now? 16-Jan-06

(c) Allan Kelly & Lise Hvatum Page 15 of 16

I invite anyone who maintains that we exhibit Conway's Law to come learn
about the structure of our system (this week :) and the structure of our team,
and then present back to us the homomorphism they find. I'd expect this to be
a short presentation, but I'll be happy to be surprised.

We have chosen not to accommodate the homomorphic force that would tend
to distort our architecture to match our organisation, or conversely our
organisation to match our architecture and either way make both
unreasonably hard to change (as noted in the workshop outcomes). This can
be done, and based upon my experience at ABC, vs. experience elsewhere
(particularly with other distributed teams) must be done. And I remain
convinced that we have done it.

What do I think about Conway's Law now? 16-Jan-06

(c) Allan Kelly & Lise Hvatum Page 16 of 16

Bibliography
Brooks, F. 1995 The mythical man month: essays on software engineering, Addison-

Wesley.

Conway, M. E. 1968 How do committees invent?, Datamation,
http://www.melconway.com/research/committees.html.

Coplien, J. 1995 A Generative Development-Process Pattern Language In Pattern
Languages of Program Design(Eds, Coplien, J. O. and Schmidt, D. C.).

Coplien, J. O. and Harrison, N. B. 2004 Organizational Patterns of Agile Software
Development, Pearson Prentice Hall, Upper Saddle River, NJ.

Cusumano, M. A. and Nobeoka, K. 1998 Thinking Beyond Lean, Free Press.

Herbsleb, J. D. and Grinter, R. E. 1999 Architectures, Coordination, and Distance:
Conway's Law and Beyond, IEEE Software, 16, 63-70.

Kennedy, M. N. 2003 Product Development for the Lean Enterprise, Oaklea Press,
Richmond, VA,.

Parnas, D. L. 2001 On the Criteria to Be Used in Decomposing Systems into Modules
In Software Fundamentals: Collected Papers of David L. Parnas(Eds,
Hoffman, D., M. and Weiss David, M.) Addison-Wesley.

Raymond, E. S. 1996 The Hackers Dictionary, MIT Press, Cambridge, MA.

Wastell, D. G. 1996 The fetish of technique: a methodology as a social defence,
Information Systems Journal, 6, 25-40.

Womack, J. P., Jones, D. T. and Roos, D. 1991 The machine that changed the world,
HaperCollins, New York.

