Introduction Agile

Allan Kelly
22 November 2006
http:/ www.allankelly.net
http://blog.allankelly.net

(c) Allan Kelly 2006

What is Agile?

Source in business literature

What is means is...
Business that recognises change
Business that responds to change
Advantage over competitors by being flexible

(c) Allan Kelly 2006

Agile for software?

“Agile processes promise to react flexibly to
changing requirements, thus providing the
highest business value to the customer at

any point in time” Jutta Eckstein (2004)

Software Agile is business focused

Don’t do anything the business doesn't
want

(c) Allan Kelly 2006

Agile manifesto (abridged)

Highest priority is to satisfy the customer

through early and continuous delivery of valuable
software.

Welcome changing requirements
even late in development.

harness change for the customer's competitive
advantage.

Deliver working software frequently

Business people and developers work together
every day

(c) Allan Kelly 2006

Agile manifesto 2

Build projects around motivated individuals

Give them the environment and support they
need
trust them to get the job done.

Face-to-face conversation is the most efficient
and effective means of conveying information
Working software is the primary measure of
progress

Promote sustainable development.
Seek to maintain a constant pace indefinitely.

(c) Allan Kelly 2006

Agile manifesto 3

Continuous attention to technical excellence and
good design enhances agility.

Simplicity the art of maximizing the amount of
work not done

The best architectures, requirements, and
designs emerge from self-organizing teams.

Reflects at regular intervals on how to become
more effective: tunes and adjust accordingly

(c) Allan Kelly 2006

Agile methodologies

Extreme Lean

Programming (XP) Adaptive Software
SCRUM Development (ASD)
Dynamic Systems Feature-Driven
Development Method Development (FDD)
(DSDM) Blue-White-Red

Crystal (Clear,
Orange, Web)

(c) Allan Kelly 2006

Common points

A t
Accept Change
Work in iterations
Eliminate

Focus on
business
needs

Eliminate rework

Continual learning

(c) Allan Kelly 2006

Accept Change

Change the way we do design...

Stop trying to “Plan for change”
RUFD over BUFD

Cuts both ways
Refactoring - part of eliminating rework

Show and tell

Give the business a chance to change its
mind

(c) Allan Kelly 2006

Accept Change 2

Cut out bureaucracy: impedes change
Just enough documentation

Time-boxing: work in fixed time slots
Within slot things are fixed

Planning meetings: start of the box

Iterations: Time-boxed piece of work
Deliverable at the end

(c) Allan Kelly 2006

Iterations

Short period of work
1 week, 2 weeks, 1 month

Time boxed
Clearly defined work
Clear priorities

Working software at the end
Which delivers business value
Completely self contained

(c) Allan Kelly 2006

Iterations 2

Requirements
Estimates
Commitments
Only the work
asked for
Completely
Feedback for End of iteration

next iteration review

(c) Allan Kelly 2006

Queues

What is a queue?
A list of work to do

Queues are predictable - statistically
Think of your local Post Office

What causes queues?
Too much work - too few people
Variability of work

(c) Allan Kelly 2006

Queues 2

Some things
take longer than others
take longer than you think

But.... some things
take less time than others
take less time than you think

Why don't they balance?
They balance below 76% commitment

(c) Allan Kelly 2006

What does this mean?

Queues (back log of work) are caused by
Variability of work
Trying to do everything - working flat out
Work is unpredictable

So... you can have:
Predictable Schedules, or
100% work usage

How do we work with that?

(c) Allan Kelly 2006

Predictable schedules

Business wants predictable schedules

Customers want to know when they will get
their web-sites

Managers don't want you lazing about
So,

we have working around 76% law
Solution: plan to drop work

Prioritise in planning meeting

(c) Allan Kelly 2006

Eliminate Rework

Poor quality costs more - rework
Reporting bugs
Fixing bugs
Managing the bugs

What if there were no bugs?

OW muc
ow pred
OW muc

N time would we save?
ictable would schedules be?

N happier would we all be?

(c) Allan Kelly 2006

Eliminate Rework 2

If we eliminate rework...
We can show the software at any time
We can stop development at any time
We can deliver it at any time

We can deliver it in increments
Some business benefit now, more tomorrow

No Big Test & Fix at the end
Everything is more predictable

(c) Allan Kelly 2006

How to eliminate rework

Ideas please...

Conscientious approach
Automated unit tests
Continual build and integration
Code review

Pair programming
Refactoring

(c) Allan Kelly 2006

Emergent Design

Refactoring
Can't work with shoddy code
Quality code ->
Easier to work work
Quality products

The deal.... Developers:
Give up BUFD
Get the right to improve code at any time

(c) Allan Kelly 2006

Lean - eliminate waste

Roots in Toyota Production System

Just in Time - No buffer stock
Saves space, saves money
Shows bottleneck and problems

Quality control
Anyone can stop the line

Work as a team

(c) Allan Kelly 2006

7 Kinds of Waste

Inventory Partially done work
Extra processing Extra processing
Overproduction Extra features
Transportation Task switching
Waiting Waiting

Motion Motion

Defects Defects

And 1n software...

(c) Allan Kelly 2006

How does it all work?

Blue-White-Red

You will need:
White board & pens
Blue index cards
White index cards
Red index cards (just in case)

(c) Allan Kelly 2006

Blue-White-Red: Planning
° S

Feature

Developers
break feature

Stories cards cards into
Business task cards
Analyst

'Y PEY,

‘JJ‘ /44

/i 4 Developers
Yesterdays estimate
Deal weather cards

? Developers
BA
prioritises
cards

(c) Allan Kelly 2006

Blue-White-Red: Cycle

Count the
cards...

|

Planning

meeting - ———— Iteration

Daily stand completes ™ ——am |
up meeting o

Release
to Live

g-runu BN
Developer Automated
implements or manual Card complete

card ©) Allan Kelly 3508

Blue-White-Red: Red cards

Hope you never need

Red cards are fault
cards

Red cards trump
others

Project with many
Red cards on the
poard is not healthy

(c) Allan Kelly 2006

Putting it all together

Business
~~eds change

Reduce
bureaucracy

you work

{ Change the way)

Customer
L involvement

)

Focus on
business
needs

Keep Clear work
improving objectives

Team is
important

o

[Refactoring

Stand up

Eliminate
Rework

)

Communicate

clearly

Unit testing

d

Code review

[Planning meetings)

meetings

Emergent design ’
(c) Allan Kelly 2006

Pair
programming

Further reading

Beck - Extreme programming explained

Jeffried, Anderson & Hendrickson - Extreme
Programming Installed

Poppendieck & Poppendieck - Lean Software
Development

Cockburn - Agile Software Development

Highsmith - Agile Software Development
Ecosystems

(c) Allan Kelly 2006

Web sites

Agile Manifesto - agilemanifesto.org
SCRUM - www.controlchaos.com

Lean - www.poppendieck.com/
Alistair Cockburn - alistair.cockburn.us

Extreme Programming
www.extremeprogramming.org
WWW.Xprogramming.com

(c) Allan Kelly 2006

The End.

Questions?

(c) Allan Kelly 2006

