Writing Your First Pattern

Everything — Well, Many Things — You Ever Wanted to
Know About Pattern Writing but Were Afraid to Ask

Kevlin Henney

kevlin@curbralan.com

Allan Kelly

allan@allankelly.net




Motivation

* Anyone can write a pattern, but it can be
daunting if you've never done it before
* Knowing where to start, what (not) to include,

what form to adopt, how to write and how to get it
generally accepted and communicated as a pattern

» The session is aimed primarily at people who
would like write a pattern but have never tried

¢ Or have tried and found it difficult

* And it also for the generally interested, i.e. those
who would simply like to know what's involved




Objectives

* In this session we're going to look at how
patterns get written

* The motivation and starting point for writing a
pattern

* What should be included in a pattern
* What should be easily visible in a pattern
* How to combine multiple patterns in a presentation

* How the pattern community is important in
improving patterns and developing pattern authors




Why Write a Pattern?

Pattern writers are cool dudes, so to write
patterns must be a cool thing to do

It helps to have a more concrete motivation... as
well as something to write

OK, what do you think?




Why Write a Pattern (Revisited)?

* You've seen or had to explain something
multiple times...

» A high-level design, a C++ practice, a process, etc
* And you want to document or understand it

* You want to share it and discuss it

* The process of writing helps to clarify to you and
others what makes the pattern tick




Have You Really Found a Pattern?

» Have you seen it elsewhere?

* Some recurrence is considered a prerequisite —
hence the use of the word pattern

* E.g. two other example implementations in
addition to your own
» Has it been documented betore?
* Was that version comprehensive and satistactory?

¢+ Is what you have in mind just an implementation
variation or does it add something deeper?




Some Things Are not Patterns

» Laws, theories and conjectures are not patterns

» Although they may be relevant to a pattern and its
presentation

* A neat, one-off and novel design lacks the
recurrence of a pattern
» Although it may well worth be capturing
* Not all idioms are patterns

¢+ And in fact, not all idioms are idioms — some are
merely techniques that lack an idiom's mindshare




Have You Found a Good Pattern?

* This is a harder question to answer, but an
important one nonetheless

» Something that recurs is not necessarily good
* It may be dysfunctional, i.e. it causes problems

¢* It may not solve an actual problem etfectively, i.e. it
may require a lot of workarounds

* It may be a solution in search of a problem, i.e. it
may look neat and compelling, but lack substance

* It may just be a convention that is, of itself, neither
good nor bad, but does not solve a problem




Some Things Are not Good Patterns

* Not everything that re-occurs is necessarily a
good pattern...

¢ Self-aware class hierarchies where the root refers to
its children (cyclic dependencies)

* Global variables (arbitrary dependencies)

¢ Non-virtual interfaces in C++ (better solutions are
available)

* The JavaBeans get and sef naming convention (an
idiom, but not a pattern)




Can You Find Help?

* Many of the questions you may have are best
answered by others

» Patterns are about communication at many levels

» Would a co-author help or hinder?

* Co-authoring can help to bring the ideas out, but it
can take practice or may not be what is needed

* Do you know a friendly shepherd?

* How about colleagues to give you feedback?
* Preferably people who have seen the pattern




A Matter of Form

* The pattern form is the written template and
style through which you present the pattern

* Pattern forms can be free and narrative or tightly
structured with many standard sections

» The form needs to target the audience and be
appropriate for kind of pattern being written

* S0 you need to keep the audience in mind

* Make sure that code doesn't swamp a narrative
form or that essential concepts don't get lost and
scattered across sections




A Starter Form

» In writing a first pattern, there is a need for
structure and guidance

* Alexandrian and similar forms are typically too
difficult for a first pattern

* However, don't get choked by structure, e.g. the
Gang-of-Four form

» A few labelled sections that highlight the
essential ingredients

* Coplien and similar forms




Essential Ingredients

* The problem...
* Context: where does the problem occur?
* Problem statement: a summary of the problem
¢ Forces: what makes the problem a problem?

» The solution...
* Solution statement: a brief summary of the solution

* Solution details: more detail, perhaps including a
diagram, implementation details, etc

* Consequences: the potential benefits and liabilities of
applying the solution




The Problem and the Solution

» Context and problem may be better merged

* The identified context may seem trivial or may
restate much of what is in the problem statement

» Consider posing the problem as a question
that the solution statement answers

* They should be readable together

* Both the problem and solution statements should
be short, sweet and sufficient

* The solution statement should start by saying what
the solution is, not what it's about




The Forces and the Consequences

» Each of the forces and consequences can be
enumerated as bullets

¢+ Ensure that there is more than one force and that
forces have some conflict with one another — an
absence of tension suggests an absence of problem

* The consequences should answer the forces

* And the consequences need to deliver more than
just good news — if it looks too good to be true, it
probably is: design is about trade-offs, so these
trade-otfs should be presented




An Example (or Two)

» Concrete examples help to motivate a pattern

* May otherwise appear too abstract, especially if
code-centric, but remember the example is not the
pattern — all sections must carry their own weight

* A worked example can bring out attempted
solutions that don't work, solution variations, etc

* Example must be simple but sufficiently realistic

* More than one worked example can help to
illustrate variations

* And encourage readers to see the pattern's breadth




Code and Diagrams

* Code can be used in the context of existing
sections if the fragments are brief

» But additional sections for motivating examples
and detailed implementation advice are more
appropriate for longer, more fully worked code

* Can you draw something that represents the
solution or even the problem?

* A picture can help to anchor and illustrate the
pattern in the reader's mind

* The picture need not be a UML class diagram




Other Considerations

* There are other features that may play a role in
presenting a pattern
* Noting variations in the solution
* Discussing alternative and related approaches

* Mentioning known uses (not particularly useful for
common patterns)

* Detailed discussion can be usetul if you have
more questions than you started with!

¢ But it should not dominate or carry the weight ot
the pattern




A Writing Process

Get your ideas down
The problem statement can be tough

* So consider writing the solution statement first

Forces are tougher

* So consider working them after listing the
consequences

Do the sections flow and make sense?

* Move, split, merge, add and remove as necessary

Review and revise continually




Ask Yourself...

» Are there forces hiding in other sections?

» E.g. the problem statement, the consequences, the
detailed solution advice

» Am I squeezing too much in here?
*» Is it interesting but outside the pattern's scope?
* Does this stutf belong elsewhere?

» Are there any other patterns hiding in here?

* Is this pattern actually the start and beginnings of a
pattern language?

* If so, is that too ambitious for a first pattern?




Beyond the Single Pattern

» Are there more related patterns, recognised or
not, written or unwritten?

* External references, thumbnails, etc, to hint at
patterns to look at or patterns to come

o [f the implementation advice becomes its own
odyssey, consider expressing it with patterns

¢ If each practice and consideration within the
solution is identifiable, valid and recurring, that is
the basis for using the original pattern as the entry
point into of a structured community of patterns




On Pattern Communities

» There are many forms of pattern community
that a pattern may find itself a part of
* Pattern catalogues organised by theme or intent

» Pattern compounds that capture and name
common, fairly fixed pattern co-ops

* Pattern sequences that describe common pattern
orderings to achieve a specific end

* Pattern languages with richer interconnections

* Consider illustrating a pattern community
using pattern stories that employ the patterns




On the Patterns Community

» What to do with a pattern once it has been
written or when you are writing it?

» Shepherding is an iterative process of review and
revision led by (for first timers) a more experienced
pattern author

* A writers' workshop offers onamous peer review

* The PLoP family of conferences offer a vehicle and
venue for shepherding and workshopping patterns

* Consider publishing a reviewed pattern (whether
online or treeline) to solicit more feedback




In Conclusion

* The good news...

¢ In principle, anyone that can describe a problem
and recognise a solution can write a pattern

¢ In practice, helps to have form, focus and feedback

e The bad news...

* A pattern is never finished (it's a work in progress)

* The good news (revisited)...

* A pattern is never finished (it's a work in progress)

* And you might get someone to continue your work




