
Blue White Red 20-Apr-09

(c) Allan Kelly – http://www.allankelly.net Page 1 of 10

Blue-White-Red, an example Agile process:
Blue-White-Red is a simple Agile system originated by Liz Sedley and myself for a

London company transitioning to Agile development. There wasn’t a great deal of up

front thought that went into this system, we just started trying to approximate XP

(Beck 2000) and at first it was a poor approximation. We modified our process as we

went along. Looking back there is a heavy Scrum (Schwaber and Beedle 2002)

influence but mainly this is what worked for us.

This process originated at one company and eventually Liz and myself left the

company and went our separate ways. We both took the same basic process and

implemented it elsewhere with modifications. This description also draws on our

experience, since so although I’ve described it as one company it is more of a

composite image.

I have come to the conclusion that you can’t just take an Agile, or any other, process

off the shelf and use it. You have to create a process that works for you. If you do

want to take an existing process and implement it then you are going to need help. In

fact I would go as far as saying I doubt you can actually implement XP unless you

actually have Kent Beck, Ward Cunningham or one of the other process authors

actually on your team. The same goes for any other process you care to choose,

DSDM, Scrum, Crystal, etc.

Basics
The whole system revolved around a large magnetic white board upon which index

cards were placed to represent work. The cards themselves were blue, white or red

and held on the board with magnets. The board was marked with important

information like iteration deadline, a record of how much work was done in previous

iterations and was divided into four columns: work to do, in progress, waiting for test

and completed work.

Product Managers produced Product Requirements Documents. Pieces of work from

these documents, usually features, would be written on blue index cards. The

information on these feature cards only needed to be brief, perhaps a title and a

Blue White Red 20-Apr-09

(c) Allan Kelly – http://www.allankelly.net Page 2 of 10

document section. These could be prioritised and the highest priority cards looked at

in more depth.

According to most Agile methods each card should represent a complete piece of

deliverable work. However the nature of our product, the existing code base and

perhaps our own inexperience meant that one ‘feature’ was more work than could be

done in a short space of time. So we put the features on blue cards and developers

would break the work down into a set of tasks written on white index cards. For every

blue feature card there would be multiple white task cards. Each white card could be

achieved in a day or two. If it couldn’t we tried to break it down further.

The break down from blue to white was usually done during the bi-weekly planning

meeting. If the feature was very complicated or poorly understood a special meetings

might be held to discuss the work and break it down. Developers could also add

white task cards to the work pile if they felt some piece of remedial work was needed,

e.g. larger refactorings.

Iterations were two weeks long. They would finish in the morning - a Tuesday,

Wednesday or Thursday, never a Monday or Friday. The online systems would

complete with a release to live. Then in the afternoon we would convene a planning

meeting. (More recently I have been running one week iterations with monthly

releases to a live server.)

Planning
In the planning meeting the Product Manager would select the features to be

implemented during the next iteration. During the iteration the team would focus on

only these features and their associated tasks. Other blue cards would be held offline

in an index card box. Since each feature could be quite large there would normally

only be a few (one, two or three) feature cards in play at any one time.

Work estimation was done in abstract points. At first this caused some confusion but

teams quickly converged on a shared understanding of how much work could be

accomplished in a single point. Estimates usually ranged between half a point and

two points. Occasionally zero point cards would be written to remind ourselves of

things or for trivial tasks.

Blue White Red 20-Apr-09

(c) Allan Kelly – http://www.allankelly.net Page 3 of 10

Although each team placed a slightly different value on a single point we normally

found that a card with a point value of more than three needed to be broken down

further. We also found that the more words used on a white card to describe the task

the more accurate the estimate. Cards with brief descriptions were usually poorly

understood and poorly estimated.

The first task in the planning meeting was to clear the board and count the point value

of the cards completed in the previous iteration. This was recorded and used as a

guide for the coming iteration’s capacity. The team could accept slightly more points

into the iteration than had been completed the previous week on the understanding

that some might not get done.

With blue cards and white cards prepared and our estimate of work that could be done

the Product Manager would prioritise all the white cards. Developers would advise of

any dependencies between cards, risks, opportunities and such but the final say on

prioritisation was the Product Manager’s. All cards were prioritised in absolute order

- 1, 2, 3, and so on. No two cards were allowed the same priority. This made it clear

what was the top priority and which the last. When priorities are set as “must have”,

“should have” and “nice to have” teams typically end up with too many must have’s

to tackle in one go so the actual work order gets decided by the team. If a business

abdicates its responsibility to articulate its needs and priorities to developers then it

should not be surprised by the results. (Although it might be difficult to communicate

this message to the business.)

Once work was prioritised the cards could be placed on the board. This formed the

work queue. Wherever possible we tried to avoid associating individuals with pieces

of work. When someone is named as the individual responsible for a given piece of

work the queue does not get worked from top to bottom. Other individuals skip a card

which is associated with someone else even if it has a high priority. Of course

sometimes you need a particular individual to work on a particular piece of work, but

on the whole we tried to avoid this.

Knowing how many points of work the team had completed in previous weeks meant

we could be quite confident of what would and would not get done during the coming

iteration. Say a team had done 10 points in the previous iteration, we would put about

Blue White Red 20-Apr-09

(c) Allan Kelly – http://www.allankelly.net Page 4 of 10

13 or 14 point on the board for the coming iteration. We could be fairly sure 7 would

get done, hopefully another 4 would be cleared and if we were lucky then we might

get more.

Developers were not supposed to work on more than one card at a time, this was

intended to keep focus. However some developers would cherry pick cards they felt

they could do as ‘back ground tasks’ or during spare moments. While well

intentioned this tended to be disruptive. Developers usually picked refactoring cards

and because it was a secondary tasks it became difficult to track the status. On one

occasion I found several cards on a developers desk, he had intended to do them in

‘spare time’ but the fact that they were on his desk meant the work was hidden.

Each day the team would hold a short stand up meeting and select the cards they

would work on from the work queue. Some developers would choose to pair on some

work but we did not pair all the time. If work was completed without pairing it would

be subject to a short desk based code review before checking into source code control.

Testing
Developers tried to write unit tests for the new features. However due to the existing

legacy code base this was not always possible. There were no unit tests for code that

already existed so refactoring existing code was difficult. All unit tests were run each

night after the nightly build was completed. Should the build or any tests fail the

whole team received mail and the first person in started to investigate the failure.

Each team had a software tester who was responsible for accepting a completed white

card. When the developer felt a card was complete it would be moved to the waiting

for test column on the whiteboard and the developer would take another card. Only

when the tester was satisfied the work was completed would it be marked and moved

into the completed column.

Testers had a variety of ways of testing cards: they could perform a manual test, they

might ask to verify the unit tests were working and they might ask for proof the code

had been reviewed. If they were not satisfied, or a defect was found, then the card

would move back to the in progress queue with a high priority.

Blue White Red 20-Apr-09

(c) Allan Kelly – http://www.allankelly.net Page 5 of 10

Finally, if a fault did slip into the system, or was reported by another team and it was

added to the team’s work load it would be written up on a red card. Red cards

automatically took priority as the next piece of work to be started. Unfortunately the

nature of the system meant it was difficult to eliminate such tasks but over time the

number did fall.

Each team that has used this process has modified it in different ways. No team was

able to eliminate all manual testing because it was not possible to retrofit unit tests to

parts of the legacy code base. Over time unit test coverage increased but never

covered the whole application.

One project that used extensive COM components had particular problems with Test

Driven Development (TDD). Testing at the component level tends to be too general,

one COM call tends to do too much stuff to test properly, neither is it possible to test

the state of the object satisfactory after the COM call. Testing inside the component,

below the COM interface tends to be difficult because COM gets into code in all sorts

of odd ways. Whether it is memory management, COM pointers, lifetime, startup, or

shutdown issues, COM makes it difficult to isolate code for testing.

Micro project variation
I term projects with very little developer resource micro-projects. Typically a micro

project has less than two full time developers. Even if there are more than two

developers attached to the project, when they are split between multiple projects the

net effort may be less than two full time people. For example, developer Fred is full

time on the project but Pete is split between three different projects

One variant of the Blue-White-Red process was used on a one developer micro-

project where I played the role of Product Manager with additional responsibility for

project management. Here we made several modifications. Firstly the code base was

smaller and leant itself more to one feature, one task, one card so we were able to

dispense with blue cards altogether and just work with white and the occasional red.

Second there was no tester on the project, neither had the developer attended the TDD

training course our other developers had. So in the last day or two of the iteration

development would stop and the developer would test. If necessary myself and others

Blue White Red 20-Apr-09

(c) Allan Kelly – http://www.allankelly.net Page 6 of 10

would join in too. Since this was an online system we could put interim versions of

the software onto a staging server during the iteration for preview by customers and

feedback.

Finally, there was a pre-planning meeting where the developer and myself (as Product

Manager) would get together a few days before the end of the iteration and assess

what had been done, what work was coming up, and how long it might take. After

this meeting I would be able to decide my priorities prior to the planning meeting

Good luck
What I didn’t recognise at the time was how lucky we were to start with. For

example, we had source code control and a regular build in place. We couldn’t do

intra-day builds, it just took too long, but we could know within a day if things were

broken.

We were also fortunate that a well-established product owner system was already in

place in the form of Product Managers. Although Agile development is good at

handling vague and changing requirements you still need someone to articulate what

the requirements are and answer questions about how the system would work. In too

many organizations developers are left without this guidance and have only their own

resources to fall back on. This can work when a product is mature or when

developers are close to the final customers. At other times the business requesting the

software seems to rely on direct thought-transference.

Some things we weren’t so lucky with. When you start with a large legacy code base

getting unit tests in place is hard. It is not impossible but it is hard. I think there are

two main problems here. Firstly there is a mental block: too many developers have a

kind of automatic dislike of the word “test”. “Testing” is associated with “software

testers” who are obviously paid less and therefore better suited to testing while

developers, well, develop.

We had managed to persuade our management that TDD was a good thing and they

had paid to bring a trainer in house to deliver a series of training courses. Although

most of our developers were trained in TDD some did not feel it was worth doing or

believed it took too much time. Unfortunately the management who had paid for the

Blue White Red 20-Apr-09

(c) Allan Kelly – http://www.allankelly.net Page 7 of 10

courses declined to make the use of TDD mandatory so usage was patchy in the

company apart from the blue-white-red teams.

Still most developers do not have experience of adding tests to legacy code so they

simply don’t know how to do it. There is one book on the subject (Feathers 2004) but

as good as this is it is no substitute for experience. In retrospect I recognise the need

to employ a part-time TDD coach to work with the team in addition to the training.

Retrospectives
The other thing I would do differently is to do more retrospectives. This is hard

because we did hold some. Our problem was getting the rest of the company to help

implement the recommendations that came out of the retrospective.

Any retrospective will suggest a number of changes in the way people work and the

processes followed. When these changes are entirely within the team they are

relatively easy to change. But inevitably, over time, these changes are made leaving

the more difficult ones to make.

The more difficult changes typically need the involvement of people outside the team

and the support of more senior managers. Unless these managers take part in the

retrospective it can be hard for them to see the need or opportunity for the change.

However trying to persuade a manager to spend several hours in a retrospective is

hard.

Like our process our retrospectives were a simplified form and again we used blue,

white and red cards. Normally I would start by constructing a timeline (Kerth 2001).

This is useful because it helps the team remember the early days of the project,

without a timeline people tend to concentrate on the most recent events. The time line

also helps put the whole project in perspective.

I would put a generous supply of cards on the table and at any time in the

retrospective people could write on the card and throw them in a pile in the middle of

the table. The rule was:

Blue White Red 20-Apr-09

(c) Allan Kelly – http://www.allankelly.net Page 8 of 10

• Blue cards for thing that worked and we should do again.
• White cards for suggestions for change: these were specific suggestions to do

something different.
• Red cards for puzzles, things we don’t understand and would like to discuss some

more. (Recently I have experimented using Red cards to capture things ‘To avoid’
doing.)

 Iteration Retrospective

Blue cards Feature under

development

Things we did right

(should do again)

White cards Development task Suggestions for

improvement

Red cards Fault (to be fixed as

priority)

Puzzles (variation: things

to avoid)

Table 1 - Summary of card use

As we created the timeline (usually on the wall with Post-It notes) people would

suggest ideas , write them on cards and throw them into the pile. Once the timeline

was built we would walk through it and discuss the events and their sequence. As we

did so more cards would be written.

Eventually we would reach a point where we understood the project better. Then it

was time to start to wrap up. I would take the cards and sort them into three piles, one

for each colour. There was no strict rule but I usually worked through the red cards

first. By this stage we had normally answered a lot of the puzzles already. Some of

the puzzles would be beyond our understanding and others we could resolve and

produce blue and white cards

Next we would start on the blue cards. I would read them out and we would agree (or

not) to keep the activity on the card.

Finally the white cards: things to do differently. Quite often people would have

suggested the same things. Here it depended on the team and the items in the pile.

Some items everyone would agree on and they were within our power to change.

Blue White Red 20-Apr-09

(c) Allan Kelly – http://www.allankelly.net Page 9 of 10

Other items we might not agree on, maybe some people would want to change and

others would not. Sometimes I would have the team vote on the top three things to

change. By limiting the items to change effort can be focused.

Since coming up with this formula Agile Retrospectives (Derby and Larsen 2006) has

been published. There are more exercises in this book which I will try to incorporate

in future retrospectives.

Conclusion
In writing this up I hope to convey a sense of how an Agile process can work, and

how you can start with something quite simple and build up. Inevitably I’ve hidden

some details, knocked off some rough edges and highlighted our successes. Simply

deciding to follow this, or any other, process doesn’t remove all your problems

overnight. You still have to work at them.

What this process does do is increase focus and expose problems. Once problems are

exposed you can go about fixing them. This is where great improvements can be

made. This process provided us with a framework which allowed us to start adopting

Agile ideas and to start improving.

Unfortunately exposing problems does not make you popular. Showing the slow pace

of development does not look good even if it is true. Exposing problems means

someone needs to fix them rather than not ignore them.

The technique I now call Blue-White-Red has worked, with modifications, at three

different companies. I don’t think this makes it universally applicable but it does

show that you can roll-your-own Agile process and I encourage more people to give it

a try.

A short version of this piece appears in Changing Software Development: Learning to
Become Agile by Allan Kelly, published by John Wiley & Sons, 2008.

References
Beck, K. (2000). Extreme programming explained, Addison-Wesley.

Derby, E. and D. Larsen (2006). Agile Retrospectives, Pragmatic Programmers.

Blue White Red 20-Apr-09

(c) Allan Kelly – http://www.allankelly.net Page 10 of 10

Feathers, M. (2004). Working Effectively with Legacy Code, Prentice Hall.

Kelly, A. (2007). Changing Software Development: Learning to Become Agile, John
Wiley & Sons.

Kerth, N. L. (2001). Project Retrospectives. New York, Dorset House.

Schwaber, K. and M. Beedle (2002). Agile Software Development with SCRUM.

