An alternative view of design (and planning) 2-Nov-03

An alternative view of design (and planning)

Traditional software development techniques highlight the importance of planning our
software through the creation of designs. We often measure our work against plans
made before coding starts, and many organisations use adherence to plan as a
management control mechanism. Yet just about anyone involved in software
development knows that time estimates are usually wrong, and program code doesn’t
always follow designs produced to start with.

Many in the agile process movement openly question why we bother with plans at all.
“Do the simplest thing possible” becomes the only design decision we need to make
again.

I’d like to propose that planning is useful, but not necessarily for the reasons we often
think it is...

Why plan?

Although the quote is sometimes attributed to others, I believe it was future US
president, General Dwight D. Eisenhower who said:

"In preparing for battle, I have always found that plans are useless, but planning
is indispensable."

The sentiment isn’t restricted to the battlefield, I’'m sure many software developers
have had recourse to this quote on occasions. What lies behind it is fact that we are
not blessed with perfect future vision. Most plans contain assumptions about how the
future will unfold, many of these assumptions simple extrapolate from the way things
have worked in the past - or how we perceive the things to have worked. Many
unknowns, and plenty of unknowables force us to make assumptions.

Even if all our assumptions turn out to be right, we have no guarantee that our plan is
complete. How much detail do we need in our plan? Too little detail and you risk
missing something important, too much detail and you’ll never get beyond planning -
sometimes called “paralysis by analysis.”

Some assumptions will be conscious and may be explicitly stated, others will be
implicit and undocumented. There will be many implicit assumptions in any
development effort, these are derived from our existing knowledge of the technology
and business and on the whole offer short-cuts to thinking. However, some of our
implicit assumptions will cause problems. Planning is ones means by which we can
flush out these assumptions and challenge our existing mental maps.

That plans assume foresight, and that foresight may be wrong is fairly obvious. What
is less obvious is that plans also assume communication. Even the best plans can fail
because they are not communicated clearly, or the receivers don’t act on the
information as we expect.

Such problems with planning led Arie de Geus to question the role of planning. In the
traditional model planning is a tool which attempts to predict the future, the plans are
then used to command and control our activities. In contrast de Geus sees planning as
tool for learning:

(c) Allan Kelly - http://www.allankelly.net Page 1 of 6



An alternative view of design (and planning) 2-Nov-03

“So the real purpose of effective planning is not to make plans but to change the
microcosm, the mental model that these decision makers carry in their heads.”
(de Geus, 1988)

Like Eisenhower, de Geus is suggesting that we don’t make plans so we can follow
them, we make plans to map out the terrain - that is, the problem domain we face.
But he also goes further in suggesting that by using planning we can accelerate
learning. He suggests planning is a game, a game were we can experiment with
different rules and safely make mistakes. The imporant part of planning is not the
output but the process.

de Geus formulated his ideas as part of the planning group at Royal Dutch/Shell, the
head of this group, Pierre Wack used scenario planning to explore the future. Perhaps
the best book on scenario planning is Peter Schwartz The Art of the Long View,
Schwartz is clear about the role of scenario planning:

“Scenarios are not predictions. It is simply not possible to predict the future
with any certainty. ... Often, managers prefer the illusion of certainty to
understanding of risks and realities. If the forecaster fails in his task, how can
the manager be blamed?” (Schwartz, 1991, p.6)

How do these ideas play out in software development? Before I attempt to answer
this question lets just recap on the two key ideas suggested:

¢ Firstly, while plans may help us to explore the future, even the best plans will not
describe the future.

e Secondly, the planning process is actually a learning exercise, and it is this
process which we value, not the plans we produce. The learning that occurs
during the process is a result of communication, exploration and the surfacing of
assumptions. Importantly, this experience is shared by the whole team.

What planning do we do?

Oranges aren’t the only fruit, and project schedules aren’t the plans we make.
Specifications, flow charts, structure diagrams, pseudo code, UML diagrams,
interaction diagrams, and a host of other diagrams all constitute plans we make in
advance as a way of exploring our problem and solution domains before we start
coding.

In fact, even when we start coding we still planning. Every function which is written
with a stub or is flagged “TODO” is part of a plan, the more we code the more the
“plan” becomes an implementation.

Planning can be a point of tension between managers and software developers. On
the one hand, some managers understand progress to mean lines of code written -
Steve McConnell calls this WISCA syndrome - “Why isn’t Sam coding anything?”
(McConnell, 1993). On the other hand, excessive planning, document writing, project
schedules, and fancy architecture diagrams can act like quick drying cement to stop a
project from progressing.

Sometime we do just jump in and code. Occasionally this is because the problem is
so simple the solution appears obvious, or more likely, we’ve seen the problem before
and know a solution that works. Other times the problem is so hideous that we don’t

(c) Allan Kelly - http://www.allankelly.net Page 2 of 6



An alternative view of design (and planning) 2-Nov-03

know were to start so try something. In this mode the code is part of the planning
process, we’re exploring the terrain by experimentation.

The value of prototyping lies in its role as a planning tool. The prototypes are written
for different audiences but typically allow people to learn about the solution before
committing themselves to a solution. By viewing the prototype, both developers and
clients can accelerate their learning about the solution.

Test first development is another form of planning. By considering the test cases
before we write any code we are again exploring the problem domain. Planning the
tests gives us a chance to improve our understanding before we start coding. Almost
as a side effect we get a test suite and save ourselves some time later on.

The traditional view of software design is akin to building development, the plans tell
us where to build a load-bearing wall. However, with software we don’t always know
where the load will occur. For example, it is almost impossible to predict where the
performance bottlenecks will be in a complex piece of software - the costs of
“premature performance optimization” are wide accepted.

Even if building design was an accurate metaphor for software design it is not without
flaws itself. Stewart Brand (1994) has criticised architects and lack of flexibility
advocated some alternative ideas (see sidebar on scenario planning.)

Planning as vision formation

The activity of writing program code requires us to make design decisions with every
line we write: Is a for loop more appropriate than while loop here? A template or a
class there?

Of course, we could draw up more detailed plans to help us, but the more detailed our
plans the more the plans are the code. (This is one of the failures of mathematical
formal methods, the resulting “specification” can be more difficult to maintain than
the actual code.) And at the end of the day, we don’t deliver plans, we deliver
working code, we want to make our design decisions at the most efficient point,
sometimes this is high level, sometimes this is low level.

What we require is a framework that allows us to make all our decisions in a coherent
manor. If we have some guiding vision for the system there is less need examine each
decision in minute detail.

Traditionally, we would ask a System Architect to draw up a high-level design for a
system. This could be refined by “designers” and implemented by software
engineers. The engineers are prevented from making mistakes because the plans
control what they do.

However, not only does this model assume that the architect and designers get the
design right, but it also assumes the model is communicated with complete clarity and
understood by everyone involved in a timely fashion.

How often do we see provisional design decisions become fixed elements of the
system? By the time we realise part of our design could be better not only is there too
much code to change but there is a bunch of developers who need re-educating.

For a system to remain flexible and soft, it is not only necessary to keep the software
flexible but the people must be capable of change too. Thus, we return to de Geus
idea that planning is part of the learning process.

(c) Allan Kelly - http://www.allankelly.net Page 3 of 6



An alternative view of design (and planning) 2-Nov-03

(Notice I say the “people must be capable of change”, not the “change the people”.
Often the first reaction of new developers on a software project is to claim the
existing code is unmaintainable and the whole thing needs replacing.)

In the de Geus’s world, everyone is part of the planning process. We plan so that we
create a mental model of the system which is shared by everyone. To put it another
way, by allowing everyone to participate in the design everyone will buy-into the
architecture and understand how it effects them.

Ric Holt of the University of Waterloo has suggested that software architecture is
most usefully thought of as a mental model shared by the development team. It is
more important for the team to hold a common understanding of what is being created
than it is to create highly detailed descriptions of technology. Holt’s conclusion
echoes Conway’s Law (1968):

“When teaching about or designing software architecture we should always
remember that the architecture is intimately intertwined with the social structure
of the development team.” (Holt, 2001)

And so we return to team work. For software development to succeed the team needs
to work together. What, you may ask, is the role of the architect here?

The role of the architect, indeed any other manager on the project is changed when we
take this view of planning. They no longer sit in a darken room and emerge with a
completed blue print of how the system should be. Their role becomes one of
facilitator.

Architects may still sit in darkened rooms and think grand thoughts, they may still
examine strange new technologies, but they no longer emerge with a plan. Instead
they emerge to facilitate discussions, their research may play a part in the architecture
and vision created by the team but for a team to truly buy-into a vision, and to truly
understand, the architecture each team member must have a hand in creating the
vision.

Emergent design

While we may like to think that the plans we make at the start of a project actually
describe the system we create the reality is usually different. We find a need for
objects that were never included in the object model, the algorithms described by flow
charts and structure diagrams turn out to be buggy so the code is different, and
refactored code quickly diverges from the plans.

As we develop at the code level a design emerges. To a greater or lessor degree this
mirrors our pre-coding plans (assuming we made any). But over time the code
becomes the best place to look for design. If we want a high level view of what and
how a system works we are better abstracting from the working code than examining
blue-prints devised before the code was written.

Acknowledging that design is an emergent, ongoing process again challenges the
traditional role of design and architecture. However, when we re-perceive design as a
learning process through which we create a common vision and understanding of the
system, and we re-perceive the architect’s role as one of facilitator rather supreme-
planner then emergent design is a natural result. Because the design which emerges
comes from a group of people rather than an individual the design is shared and
understood by all.

(c) Allan Kelly - http://www.allankelly.net Page 4 of 6



An alternative view of design (and planning) 2-Nov-03

What about plans as documentation?

Of course, plans have another use, they are the place we turn to first when confronted
with a new system. Day one on a new job and we all expect to be given the system
design, and usually we find it doesn’t exist, or, at best, is out of date.

The fact that plans seldom reflect the realised system has long been known, and
famously led Dave Parnas and Paul Clements to write about “A rational design
process and how to fake it” (Parnas, 2001). They argue that after building our
systems, we should go back and create the documentation we would have created if
we had perfect foresight.

Although this may seem a novel idea it suffers from a number of problems, not least
that it assumes we will be allowed time to write documents once the development has
completed.

More dangerous is the fact that we are introducing an element of dishonesty into the
process. No matter how well intention our motives we are doing something
subversive, is it any wonder that managers ask “Shouldn’t you have done that before
you started?” Introducing subterfuge into the process is counter productive as it also
undermines trust.

Rather than fake our plans it is far better to be honest and say “We wrote this after the
event.” If we want documentation for future developers than we should produce that
as a specific task based on the working system.

Unfortunately there are two catches here. Firstly, much of what we learn when
developing software is tacit knowledge. It may be shared by the team but it is
actually incredibly difficult to write down. The fact that we can codify it at all in
program code is pretty remarkable - although often we may not realise we’re doing it
- implicit assumptions again.

We can try and compensate here by writing copious amount of documentation.
However, this brings us to the second catch which observant readers will have spotted
already. Remember de Gues point about speeding up learning? The more
documentation you produce the longer it is going to take new people to come up to
speed on the system. Less can really mean more, less documentation can result in
more time actually learning about the system.

In fact, copious documentation may make things worse still because we come to rely
on words and diagrams. Assuming these are accurate (a big assumption) we have
now changed the nature of the issue from one of problem solving to one of applying a
documented solution.

However, software development is inherently a problem solving activity. If it wasn’t
we could automate the process. Therefore, although they may help, documentation
and plans never contain the solutions, they may actually be false friends.

Final thought

One final thought, in de Geus’ model of planning as learning it is the institution that
learns - were we interpret institution in the broadest sense. He says:

“And here we come to the most important aspect of institutional learning,
whether it be achieved through teaching or through play as we have defined it:
the institutional learning process is a process of language development. As the

(c) Allan Kelly - http://www.allankelly.net Page 5 of 6



An alternative view of design (and planning) 2-Nov-03

implicit knowledge of each learner becomes explicit, his or her mental model
becomes a building block of the institutional model.” (de Geus, 1988)

The emphasis on language creation is similar to the pattern community. By
developing a language whether through patterns, planning or scenarios we create high
level abstractions that allow us to discuss complex topics.

Other parallels exist with patterns, like patterns this view of planning seeks to turn
implicit knowledge into explicit knowledge, both focus on creating building blocks,
pattern writers and scenario planners are directed to focus on forces and particular
importance is attached to naming both patterns and scenarios.

How different, and how much more exiting, to view planning this way instead of an
GNATT chart.

Bibliography

Brand, S. (1994) How Buildings Learn: What happens after they're built, Penguin.
Conway, M. E. (1968) How do committees invent?, Datamation.

de Geus, A. P. (1988) Planning as learning, Harvard Business Review, 66, 70.

Holt, R. 2001 Software Architecture as a Shared Mental Model,
http://plg.uwaterloo.ca/~holt/papers/sw-arch-mental-model-010823.html,
Position paper to ASERC Workshop on Software Architecture

McConnell, S. (1993) Code Complete, Microsoft Press, Redmond, WA.

Parnas, D. L., and Clements P.C. (2001) A rational design process: How and why to
fake it In Software Fundamentals: collected papers of David L. Parnas(Ed,
Hoffman, D. M. a. W., D.M.) Addison-Wesley.

Schwartz, P. (1991) The art of the long view, Bantam Doubleday Dell, New York.

(c) Allan Kelly - http://www.allankelly.net Page 6 of 6



