
More research on estimation

(c) Allan Kelly, 2013

http://www.allankelly.net, allan@allankelly.net

A little over two years ago I set out to better understand the art of time
estimation, specifically time estimation for software development work. This
was initially motivated by a request from Jon Jagger to support two assertions
I claimed were “proven by research.” I read and reviewed a number of
academic studies on estimation and posted the results online - see http:
//www.allankelly.net/writing/misc.html.
Earlier this year my interest in the subject was sparked again and I decided
to look for more research in the field. Once again I have read a few hundred
pages of academic research studies.
The notes in this document are my own notes on these studies. The notes
are primarily intended for myself but I am more than happy to share them. I
have also attempted to draw some conclusions from these studies.

Effects of Deadlines - “Procrastination, deadlines, and
performance: self-control by pre-commitment”

Ariely & Wertenbroch - (Ariely and Wertenbroch 2002)
This is a study concerned about the role of deadlines in combatting individual
procastinations. As such it is a little different to the other studies I have
reviewed because it is not concerned with estimation, it is concerned with
deadlines. I have reviewed and included the study here because deadlines
have a bearing on the iteration and estimation debate.
Before looking at what the study says there need to be two caveats on
this review. Firstly the study as primarily concerned with deadlines and
whether people could combat procrastination through self-imposed deadlines.
Procrastination is sometimes and issue for software development teams but is
not an issue which is discussed much, and it is not an issue I have set out to
examine in these reviews. However, I believe the findings of this study are
interesting in the debate all the same.

1

http://www.allankelly.net/writing/misc.html
http://www.allankelly.net/writing/misc.html

Secondly this study looked at individual not team behaviour. The authors
have nothing to say about the role of deadlines in team working. If the
findings of this study can be extended to teams then they are interesting. I
am going to make the rather general assumption that they can.
Perhaps I should say, I stumbled across this study by chance, following
references from other studies here, so I have not gone looking for contradictory
studies or other studies in this field.
This was a laboratory style study in which the researches divided subjects
into three groups and applied slightly different conditions in order to test
three questions:

a) Do people self-impose costly deadlines to overcome procrastination?

b) Are self-imposed deadlines effective in improving task performance?

c) Do people set self-imposed deadlines optimally?

And the answers are. . . . Yes, Yes, No.
Self-imposed deadline are a little like iterations, we set our teams reoccuring
deadlines, every two weeks. That teams self-impose dealdine is obvious to
students of Agile, this study merely says: it is a strategy that individuals
employ too.
If we regard iterations (i.e. sprints) as a form of self-imposed deadline then
we can expect a team that works in iterations to be more effective than team
which doesn’t work with deadlines. Now while that might seem reasonable
it rests on two assumptions: that we can extend research on individuals to
teams and that iterations are self-imposed deadlines. Which lead nicely to
the next question.
The researchers find that individuals do not impose their own deadline
optimally. Now optimally might be a strong word, it is true the research
doesn’t consider every permutation but they do contrast self-imposed deadlines
with two other types: maximally extended deadlines and externally imposed
evenly spaced deadlines.
Maximally imposed deadlines correspond to traditional project management:
we set a date, if it is not acceptable to “the business” then it is reduced.

2

However we we can extend it some more then we probably do - if not in the
first instance then by adding “contingency” or when projects start to “slip”
asking for more time.
But, according to the researchers, participants performance is highest when
they work in externally imposed regular deadlines. Regular deadlines corre-
spond to fixed-length iteration in the software development world.
So if this research is valid for teams then working in fixed length iterations
produces higher performance than either traditional maximum deadlines or
Kanban-esque freeflow.
This leaves the point of self-imposed v. external. The researches did not
consider self-imposed regular deadlines so we have no data here. However I’m
not convinced this is undermines the research from a software development
point of view. For an Agile team it is debatable whether an iteration deadline
is self-imposed or not. The team might be given the schedule in the first
instance but teams have power to change it - probably via a retrospective
but possibly via other mechanisms.
Secondly, since the development team have a say in what work is scheduled
into the iteration the deadline is in part externally imposed and in part
self-imposed.
Caveats and debates aside I think this research supports that working in fixed
length iteration can be an effective approach for teams.

How Long Will It Take? Power Biases Time Predictions

Mario Weick and Ana Guinote - (Weick and Guinote 2010)
This paper looks at the effects that power can have on forward looking time
estimates. The authors hypothesis is that “power increases the tendency to
underestimate task completion time”. To investigate this hypotheses they
conducted several experiments, some in a lab. As a result of which they claim
to have proved their hypotheses.
Thus the paper claims: people in positions of power and authority tend to
provide shorter time estimates than those in lesser positions.
“Power” is defined as social-power, " the ability to influence and control others’
outcomes and resources."

3

The transmission mechanism is first the goal: those in power focus more on
the goal. This has two consequences. First they focus their attention more
narrowly on the goal thus consider other sources of information (e.g. how
long something similar took last time) less.
Secondly because they are focused on the goal “powerful individuals are
more oriented towards achieving gains and rewards, and less apprehensive
about avoiding threats or constraints as compared to powerless individuals”.
This does mean that these people are more action oriented and being goal
focused may benefit them during the work but in planning accurately it is a
hinderance.
The authors also point out several other transmission mechanisms which
might be at work:

• Powerful individuals may well be more optimistic than others and
therefore dismiss impediments and threats

• Powerful individuals may have more confidence in their abilities

• Power itself may make the individual more optimistic.

The study authors focus on the goal explanation and claim that it is the goal
and consequent changes in attention, rather than optimism, that leads to
lower estimates. (“We did not find evidence that power leads to greater bias
in time predictions because powerful people are more optimistic; . . . Likewise,
the effects of power could not be attributed to differences in people’s beliefs
in their abilities (i.e., self-efficacy), or to differences in mood.”)
As a result of their studies the authors say: “powerful participants, more than
[the] control [group] or powerless participants, consistently underestimated the
time it would take them to complete future tasks. . . . power has a fundamental
impact on planning behaviour, increasing biases in time estimates.”
It needs noting that the study was concerned with power, not powerlessness.
There are no claims, or data, that reducing an individuals power will increase
the accuracy of their estimates.
One interesting aside the authors mention is the role of abstraction. Abstrac-
tion, like power, leads individuals to focus more on the outcome, drawing

4

attention away from the tasks. Thus, estimating a very abstract piece of
work, say a piece of software, might be more prone to underestimates.
Conversely the authors also note that abstraction can lead people to consider
past event more, thus correcting the bias. Either way this adds an interesting
twist to the software prediction debate.
Although the individuals in this study had “power” they did not exercise
power. This might be a small flaw in the study from some points of view.
However the authors note that the more power someone has the greater their
bias (i.e. underestimate) is likely to be.
Finally, another corollary is noted: “the same mechanisms that make people
prone to underestimate time also increase the likelihood that individuals take
unwarranted risks. The present findings thus complement past research that
has shown that power promotes more optimistic risk-assessment.”

Vierordt’s Law

Vierordt’s law concerns the perception of perceived duration of a
time period in retrospect. The law actually dates back to 1868
and is named after Karl von Vierordt, a German physician, who
first observed it. According to Wikipedia Vierordt was the first
person to carry out experiments in time perception.

The law states that people overestimate short periods of time and
under estimate long period of time. For example, suppose you
are waiting for a bus without any means of telling time. If you
wait for two minutes and someone asks “How long have you been
waiting?” you may well answer “For ever, at least five minutes,
possibly 10”. But, if someone else asks you 18 minutes later you
may well say “Ages, about 10 minutes.”

While I just invented those numbers those numbers several sources
suggest the cut-off point is between 2 and 10 minutes, i.e. anything
less than two minutes is a short interval and anything more than
10 long, in between is a grey area.

5

Not only are short periods remembered as being longer and long
periods remembered as being shorter but the longer the period
the greater the underestimate of time. Wait another 20 minutes
for that bus and when someone asks you may well say “Too long,
20 minutes” when in fact you have waited 40 minutes in total.

While a couple of studies mention Vierordt’s Law many do not.
One might even say it is notable by its absence. I’m not sure
why this is so, possibly the research is too old to be considered
relevant, possibly the various researchers are also aware of the
law or possibly, compared to modern techniques, the Vierordt’s
research is not valid.

Effect of task length on remembered and predicted du-
ration

** Michael M. Roy and Nicholas J.S. Christenfeld ** - [@Roy2008]
This study examined Vierordt’s Law and found the law held. Actually, this
paper, and this law answers one of the original question I had when I started
this research. I wanted to know whether retrospective time estimation was
any more accurate than forward time estimation. Vierordt’s law goes a long
way to answering that question.
Actually this paper goes a long way to answer my general question. The
authors examined whether Vierordt’s law holds looking forward: certainly
this would fit with most of the other research I have reviewed but this is
the first paper that a) discussed Vierordt’s law and b) looks at this specific
question.
The authors conducted several laboratory experiments with over 200 partic-
ipants given simple tasks to perform. The found that Vierordt’s law held:
participants given the short task over estimated how long the tasks took (by
5.9%) while those given longer tasks underestimated how long the tasks too
(by 36.2% for the longest task).
And perhaps more interestingly the researchers found the same pattern for
predicted time. That is, participants given the shorter tasks over estimated

6

how long the tasks would take and underestimated how long the longer tasks
would take.
Although the switch-over point from longer to shorter was slightly later it
still fell within the 2 to 10 minute range. To be exact, tasks taking less than
1 minute 32 seconds were over estimated in advance while tasks taking more
than 1 minute 56 second were underestimated in retrospect.
It is worth quoting from the papers findings:

• “Task duration had a significant effect on magnitude of bias: Partic-
ipants were inclined to overestimate when the task was short and to
underestimate when the task was longer, with the amount of underesti-
mation escalating as task duration increased.”

• “The results indicate that Vierordt’s law applies not just to recollections
of past tasks, but also to estimates of future task duration. We found
no difference between past and future estimation, with both affected in
the same manner by duration of the task.”

Although two minutes seems a very short frame of reference the authors do
suggest that the cut-off point changes as the scale (second, minutes, hours,
days, weeks) changes.

For software development

These findings have are quite significant for software development. Given
that few development tasks are less than two minutes in duration, and those
that are are unlikely to be estimated or managed, Vierordt’s law is dominant.
Even if switching to a different scale moves the cut-off point one might assume
it is still towards the low end of the interval.
Two immediate thoughts.
First any attempt at traditional time tracking - filling in time recording
sheets - is pretty much doomed. One of the other studies I looked at before
(Zackay and Block 2004) suggested that if you wanted to accurately track
time spent on a task you had to devote energy to it which detracted from
actually undertaking the task.

7

Second, estimating larger things leads to a greater underestimate: whether at
a task or project level the bigger the thing you are estimating the greater the
undershoot. (This would also feed into the diseconomies of scale argument.)

Finishing on time: When do predictions influence com-
pletion times?

Buehler, Peetz, Griffin 2009-2010 (Buehler, Griffin, and Peetz 2010)
This study looked at whether the predicted time to undertake a task influenced
the actual time it took to do the task. To investigate this question the authors
conducted four laboratory style experiments. The result is not a simple yes
or no, to understand the results we need to introduce the concept of “Open
tasks” and “Closed tasks”

• A closed task is one which can be carried out in a single session,
e.g. proof-reading an article

• An open task is one which needs multiple sessions; perhaps it requires
reference to other people, or some research or look-up which is outside
the main task, e.g. filling a tax return

For both types of task, in all studies, participants underestimated how long
it would take to do the task. However, for closed tasks those with optimistic
estimates finished the task sooner than those with pessimistic estimates.
To illustrate this imagine an optimistic programmer asked to undertake a
fairly short code change. The optimist estimates the work will take fours hours
may actually take six hours to undertake the task. However a pessimistic
programmer who estimates the task will take six hours might actually take
eight.
Note we are not talking about coercion here. While these researchers used
an anchoring procedure to induce optimistic or pessimistic estimates there
was no equivalent of a manager standing over our imaginary programmer
saying “Can you reduce that estimate?”. There is no data in this paper on
what effect that would have.
(Although in their review the researchers do note that offering financial reward
and publicly sharing estimates causes individuals to suggest lower estimates.)

8

Now the the open tasks. those which could not be performed in one sitting.
Here the researchers found no difference in how long it took to undertake the
task. In both cases optimistic and pessimistic estimates were short.
Lets return to our imaginary programmers. If the task involves undertaking
some work, passing it to someone else for test, getting the results back and
then finishing the work both optimistic and pessimistic will take the same
time.
While we can speculate on why this might be, and the researchers do, it
occurs to me that perhaps what we should be considering is: how can open
tasks be made more closed?
Lets continue with our example: if our programmers are practising TDD, or
if a tester is working directly with the programmer - perhaps pairing - then
the task will be more closed than otherwise. Regardless of the benefits of
these practices in their own right they may also improve estimation. I hasten
to add I have no data here so there is an element of speculation here.
Returning to the open tasks, although the optimism did not make the task
happen any faster - unlike closed tasks - it did cause the task to be started
earlier. But this did not translate into an earlier finish. Once started those
who started earlier (those with optimistic estimates) worked at the task for
longer than those who started later (those with pessimistic estimates).
Both groups finished the task by the deadlines and there was no evidence
that the quality of the work differed. Simply: starting the open task sooner
meant a longer elapsed time.
For example, given a programming task an optimistic programmer may esti-
mate it will have six hours as opposed to a neutral programmer who estimates
it will take eight. The optimistic programmer starts work immediately and
end up taking ten hours. The neutral programmer starts work two hours
later and takes nine hours.
One more finding from the paper is worth noting:

“Notably, in our studies tasks that were quite similar in duration
showed markedly different completion times depending on how
prone they were to interruptions and delays, suggesting that task
completion times are determined to a great extent by factors other
than the duration of a task itself”

9

This fits with the popular notion of “flow” and the desire of many programmers
to free themselves of disruptions and interruptions.
This paper is interesting for two more reasons.
First the paper introduces the mere-mention effect: “Predicting, per se, may
also have self-fulfilling effects on behavior; simply asking people to predict
whether they will perform desirable actions (e.g., voting, donating to the
Cancer Society) increases the probability that they will perform these acts).”
Second it also demonstrates anchoring in action and proves the effect (again).
If a time period is suggested - explicitly or implicitly - before the estimate is
given the estimate will be influenced by the suggestion.

For software

Moving slightly away from what the paper says and putting these findings
into a software context. What emerges is a rational for optimistic estimates:
either by reducing the elapsed time or simply by bringing both start and end
dates forward work should benefit.
This in itself might explain why the planning fallacy is so prevalent: it
makes sense to underestimate tasks be optimism has positive side effects.
Unfortunately this detects from accuracy of plans, if we could adjust for this
optimism and produce accurate plans the optimistic predictions would look
less optimistic, even pessimistic. This in turn would increase the duration of
closed tasks and delay the start of open tasks.
In effect this logic proves Hofstadter’s Law: “It always takes longer than
you expect, even when you take into account Hofstadter’s Law.” (Hofstadter
1980).
The finding that open tasks take longer when started earlier supports the “fit
the work to the deadline” approach rather than the “set a deadline to match
the estimates” approach, i.e. the time-boxed Agile way of working over the
traditional estimate and plan approach.
This turn supports the view that long-range planning in development is of
limited value. Consider an analyst tasked with understanding requirements
for work that might happen in six months time. On the face of it she has
plenty of time to understand what is needed. However this approach might

10

make for six months of on-off-on again working, say three months of effort.
While starting the work two months before the requirements are needed may
cause all necessary work to be compressed into two months.
The above notes suggest an interesting line of thinking which brings together
several different elements discussed here, and my own observation, so you
have to decide for yourself if you agree or not. Ideally someone would do
research on this.
As the authors noted there are several ways of influencing people to produce a
shorter estimate, e.g. anchoring (as per the experiment) and offering financial
incentives.
Lets assume a programmer is offered a financial incentive, a bonus, to complete
a piece of work. Based on the research we would expect them tender a shorter
estimate - the person asking for the work is probably already happy at this
point. But what happens now?
If the work is a closed task then we might expect - as per the research - that
the task will indeed be finished earlier, the programmer will get his bonus
and everyone will be happy.
However if the work is of an open nature then the estimate will be shorter than
without the bonus but the completion date will not change. The programmer
will be unhappy because they will not get their bonus and the person wanting
the work will be unhappy because the work is actually later than they would
have expected - and the work may actually cost more because it took longer.
Now an observation of my own: financial incentives are seldom - if ever
- offered for closed tasks in IT. In my experiences bonuses are offered for
significant tasks, tasks which take more than on sitting, tasks which often
involve co-ordination with others - typically things we call “projects.”
Thus, offering a bonus may bring about exactly the opposite effect of that
which is desired.

Correcting Memory Improves Accuracy of Predicted
Task Duration

Roy, Mitten and Christenfeld, 2008 - [@Roy2008]

11

This paper sets out to examine whether predictive estimation can be made
more accurate. To do this the researchers conducted several experiments
which involved providing participants with feedback about how long previous
tasks took.
The results: estimates did get more accurate with feedback.
Looking at all the research literature there are two reoccurring explanations
of why people underestimate. One is the goal focus - when people focus on
the end result they think less about the work needed, the desirability of the
end result causes them to become optimistic in estimates.
The second explanation is that people neglect to consider past experience in
undertaking tasks and therefore are over optimistic. This explanation may
further be split: people neglect past experience because that are resistant to
doing so, or that the memory itself is inaccurate. This paper considers the
second of these explanations, that memory is inaccurate.
These two theories (goal focus and memory neglecting) are not entirely
exclusive, my guess would be both are at play in creating underestimates.
The key point in this research seems to be the feedback loop. Although some
of the research I’ve read suggests people neglect past experience (e.g. Buehler,
Griffin, and Ross 1994) these researchers suggest it has a role to play.
One problem I see in a work environment, specifically software development,
is that quantifiable past experience is hard to come by. We could ask someone
“How long did it take the last time?” but this falls foul of Vierordt’s Law
(and the supporting research) which says we retrospectively underestimate.
We could use traditional time reporting systems but a) Vierordt’s Law is at
work again and b) Capers Jones suggests such systems are inaccurate to the
point of risk (Jones 2008).
Short of having someone actually observe and time how long individuals take
on their work (as the researchers do for this study) it is difficult to see how we
could gather this data. (Although source code control systems might provide
an interesting data set to analyse.)
Complicating matters is that software development, unlike many of the
experiments in these research tasks, is a complex field that involves innovation
and novel tasks. The fact that we tend to automate much routine work more
or less guarantees that any task we undertake is indeed novel.

12

These researchers also mention that “Underestimation also occurs more
frequently for familiar tasks, whereas novel tasks are often overestimated”
and cite supporting research. I’ve not had a chance to follow this reference
up but this would tend to contradict what we see in software development.
The actual research consisted of several paper counting tasks (closed tasks to
use the earlier jargon). In the first experiment participants performed the
task and were timed. Some of the participants were then asked to estimate
how long it took (which they underestimated) and then asked to estimate a
repeat of the exercise (which they also underestimated.)
Other participants were told how long it took and then asked to estimate
how long a repeat would take. This group over estimated how long the task
would take to repeat, although another way of looking at this is to say they
underestimated the improvement they made.
Unfortunately the paper doesn’t say how long it took each group to complete
the second (repeat) exercise. Consequently it is not possible to tell which
group completed the task more quickly. In the light of the previous paper it
would have been interesting to know whether the lower estimates were related
to better improvement overall.
This highlights several points that need to be stated clearly:

• Estimation is not an end in its own right; the estimation can be a step
along the way to achieving a finished task. I would suggest most people
are more concerned about how long the task takes than they are about
the estimates.

• Estimation accuracy isn’t just a measure of how close to “actual” the
estimate is. There is the direction of the inaccuracy (under or over
estimate) and when more than one estimate is made there is a need
to consider variance, i.e. it is possible to have some estimate which are
individually closer to actual while others are further away.

After experiment 1 the authors state:

“Overall, it appears that supplying feedback about how long the
task took previously improved participants’ ability to predict how
long it would take them to perform the task again in comparison
to participants relying on memory of previous task duration.”

13

I’m not sure about this, I wonder if what the authors doing is actually
anchoring participants. Are they really correcting memory? And does it
matter?
Another twist to the retrospective estimation is added by this paper: when
the retrospective estimate is made. In one experiment there is a very small
overestimate when the retrospective estimate is made one week later but a
small underestimate when it is made immediately.
Overall the second experiment has similar findings to the first (it also attempts
to investigate whether giving feedback at different times makes a difference.)
This time those who estimate how long they took on the first exercise (of
experiment 2) overestimate how long it will take to do the second exercise,
although they do not overestimate by as much as those who are given timed
feedback rather than asked to estimate retrospectively. So again, people
underestimate their own improvement.
(Notice there is no way to win here, underestimation seems to occur in some
form each time!)
I must admit at about this point my ability to understand this paper starts to
break down. I’m trying, and I will keep trying, but jumping between tables,
numbers, statements and log statistics makes it hard to follow!
Some of the complications in this paper come from the researchers desire to
see how giving feedback at different times (immediately after the exercise or
a week later) influences their estimates. While this is an worthy exercise it
is not what I’m looking for. If you are interested you are best reading the
paper yourself.
The outcome of this research is best summarised towards the end of the paper:
“Supplying participants with feedback on previous task duration, whether
their own or that of people in general, led to increased accuracy for several
different tasks”. While this might seem obvious the researchers point out that
some previous studies do suggested that feedback did not effect estimates.
However the paper also states: “we found no benefit from asking participants
to remember previous task duration before making a prediction”.
The research suggest that people are willing to consider information on past
tasks but that their recall of past tasks is faulty. Therefore to supply the
information requires a specific procedure.

14

For me this paper raises almost as many questions as it answers. In terms of
software development this is one of the more difficult papers to draw lessons
from. While all the research papers I have reviewed to date look at tasks
far simpler than coding (e.g. counting paper) there are usually lessons that
can be drawn. In this case it is hard to see the lessons because software
development work is so hard to measure in the first place. Therefore obtaining
good feedback to inform judgements is fraught exercise itself.
This research is the first paper I’ve read where I actually find myself taking
issue with some of the research. Perhaps I’m getting too much practice at
this but:

• All tasks considered are “closed”

• All tasks are around 15 minutes long so we would expect Vierordt’s
Law to operate and participants to underestimate

• There is no consideration of whether the estimation process changes
the time it takes to perform the tasks

Ironically right at the end of paper the authors say: “there are cases in which
data on task duration are available but underutilized. For example, in the
area of software design, companies routinely keep detailed records of how long
previous projects have taken in the form of billable-hours records.”
These seems lax thinking on behalf of the researches. The data they propose
using - at least at the individual and task level - is itself the result of
retrospective estimation with all the inherent problems in recalling duration
as they have been discussing.
This data is also subject to a number of other flaws, e.g. failure to pay or
record overtime. Capers Jones suggests traditional time tracking systems
loose 20% or more of the actual time spent (Jones 2008). He also states that
determining the start and end dates for projects is extremely difficult.

Bias in memory predicts bias in estimation of future
task duration

Roy & Christenfeld, 2007, (Roy and Christenfeld 2007)

15

Another paper from Roy and Christenfeld (as the previous paper, although
this one is a year old) that sets out to explain the failure to estimate future
durations accurately due to the failure to accurately remember past events.
These two authors seem to be the main proponents of the “failure to remember
accurately leads to failure to predict accurately” argument. This argument
is not wholly at odds with the “optimism and goal focus leads to under
estimation” argument but it is different. Personally I can accept that both
play a part but I am sure there are some who would argue that the two are
exclusive.
As this paper pre-dates the previous paper and the authors largely cover similar
ground I don’t intend to examine it as closely as the previous one. Although
they don’t mention Vierordt’s Law the authors do present an impressive list
of studies demonstrating that people underestimate past durations.
The authors find that:

“(1) the tendency to underestimate future duration disappears
when the task is novel,

(2) there is similar bias in estimation of both past and future
durations, and

(3) variables that affect memory of duration, such as level of expe-
rience with the task and duration of delay before estimation,
affect prediction of duration in the same way.

It appears that, at least in part, people underestimate future event
duration because they underestimate past event duration."

Of these #1 and #3 are the most interesting. Finding #2 supports the
argument I have made before that the thing the software industry likes to
call “actuals” are more accurately called “retrospective estimates.”
The authors conducted a paper folding experiment to test the hypothesis that
memory bias wold not exist for novel tasks - the paper shape the participants
were asked to fold was new to them. (These were closed tasks, tasks that
could be completed in one sitting, to use the terminology introduced before.)

16

Those who estimated the task duration before folding the shape over estimated
how long it would take while those who estimated after the fact under
estimated.
This does seem to support the authors hypothesis. However if we are to
consider “Accuracy” this doesn’t get us very far. The under-estimators (those
estimating after the exercise) estimated the task took 10 minutes when it took
13.5 minutes (both averages). So an average displacement of 3.5 minutes.
But the over-estimators thought it would take 20 minutes (on average) while
it only took 11.5 minutes. A displacement of 8.5 minutes. (The fact that
participants were rounding 10 and 20 minutes is noted towards the end of the
paper but the authors say little more, this could be worth exploring further.)
For me these timings are just too close to Vierordt’s cut-off at 2 to 10 minutes.
Yes, the task took more than 10 minutes but Vierordt’s cut-off isn’t fixed.
Although the authors say that the actual difference in time to complete the
exercise (13.5 v. 11.5 minutes on average) isn’t statistically significant it is
interesting to note. This could support the case that estimating before hand
helps lead to shorter completion times.
I’m not sure how relevant this experiment is to the software world. As
previously noted we seldom estimate such small tasks. However it does raise
the question of what is novel in the software world?
On the one hand every piece of code which is written is novel because each piece
of code does something unique. On the other hand coding is coding, coding
one piece of Java isn’t a million miles from coding another piece. Perhaps it
suggests that initial estimates - say when working in a new language or on a
new system - will be more prone to over estimation (although that doesn’t
ring true with personal experience.)
From my point of view the most significant thing about this research is that
it demonstrates how the whole field of estimation is still not well understood
and sometimes throws up seemingly contradictory evidence.
The second experiment was another paper folding exercise and addressed
point #2 and #3 above. This throws up a few interesting findings:

• “At the very least, it seems clear that properly utilizing memory will
not increase the accuracy of prediction.” This finding would seem to
undermine the authors main argument.

17

• “Underestimation was greater after a 10-min delay.” When the authors
introduced a 10 minute delay in asking for the retrospective time esti-
mate the participants increased their underestimate. For anyone trying
to have software developers record “actual times” from memory this
should be worrying - and again suggests that if an organization wants
accurate “actuals” they need to put some effort into the activity.

• “Estimation of duration moved from overestimation to underestimation
as experience with the task grew” This finding is very interesting,
put together with the “authority leads to lower estimate” this would
support the case for not leaving estimated to experienced staff. In fact
the authors note, with specific reference to the software development
field, that the practice of leaving estimating to “an expert” may result
in the estimate being done by the most biased person.

What is clear is that a large number of variables effect estimation accuracy.
Not least level of experience but also, at least for retrospective estimates, the
delay between undertaking as task and making an estimate.
As the authors point out “participants continued to be biased in their estimates
even though these factors were controlled.” If accurate estimates (forward
or retrospective) cannot be obtained in safe laboratory conditions then one
wonders if accurate, estimates can ever be obtained.
When I started to read this paper I didn’t expect to get much from it. But
having read (most of) it I was proved wrong. That said there are a few
questions I think the paper leaves unanswered, potentially further research:

• Is rounding prevalent?

• Do the same findings hold true with longer tasks?

• How novel is novel? What if the novel tasks were more involved.

The Planning Fallacy: Cognitive, Motivational, and So-
cial Origins

Buehler, Griffin and Peetz - (Buehler, Peetz, and Griffin 2010)

18

Although some of the other studies reviewed here are big, this is the biggest
at 62 pages. However it contains no new experiments, it is a review of other
work - including much of the work mentioned here - and an attempt to create
a cognitive theory of the field.
That is all by way of saying: I haven’t read every word of this study, I might
have missed something. However, I would like to quote a few statements that
drew my attention:

• “The signature of the planning fallacy, then, is not that planners are
optimistic but that they maintain their optimism about the current
project in the face of historical evidence to the contrary.” This might
be a little academic on my part but I think it is useful to be reminded
of this element of the original planning fallacy.

• “We know from the literature on software development projects that
overestimation is typically found when measured either way: as program-
mer hours or by the time to the completion of the project. Nonetheless,
larger overruns are generally found in estimates of completion time”

• In one experiment the researches asked participants for time estimates
“if everything went as poorly as it possibly could.” The subsequent
estimates still proved to be short for 70% of participants. However
the estimated times were correlated with actual times, thus providing
evidence that people can perform relative estimation.

Yet when asked to recall the time participants under reported how
long tasks took. Again supporting the retrospective estimation is
little different than forward estimation in accuracy.

• The reviewed studies again show that for tasks measured from a few
seconds to a few minutes people over estimate how long a task will take.
As the tasks get longer - hours to days - under estimation is the norm.
Vierordt’s Law again.

There are some interesting insights into how estimates can become be biased,
or more biased towards optimisim:

19

• “Despite the predictive value of past experiences, our findings suggest
that people neglect them while forming predictions.”

• Motivated people tend to estimate shorter completion times but those
completion times do not match actual times. For example, in one study
Canadian tax payers expecting to receive a tax refund estimated they
would complete their tax forms 10 days earlier than those with less
motivation, but they actually only completed their forms 3 days earlier.
The authors conclude “motivation enhances the planning fallacy through
a heightened focus on future plans.”

• Directly offering monetary incentives seems to create the same effect:
estimates are lower but actual task completion time was little changed.

• Group estimation also leads to a great bias towards low estimates:
“participants in all conditions underestimated how long they would take
to complete the tasks, but predictions based on group discussion were
significantly more optimistic (and hence more biased) than predictions
generated by individual group members”

• Verbal estimates are more prone to underestimation bias than written
estimates.

Obviously if you want unbiased estimates a first step would be to stop: remove
financial incentives, avoid group estimates and write estimates rather than
speak them. Beyond there are several strategies for de-biasing estimates:

• “Reference Class Forecasting” asks people consider previous, similar,
tasks and present them with the data. Of course you need a) similar
previous tasks to reference and b) accurate data which given peoples ret-
rospective underestimation needs to be objectively measured somehow.
(This is something I should read more about.)

• Observers estimates can be better than participants; I would suggest
including observers, or asking estimates “to estimate for another team
member” but I would shy away from having all estimates done by people
outside the team. Partly because this removes some incentive effects
and seems unfair.

20

• Manipulating people so they focus on obstacles rather than goals can
produce later estimates but again (to my mind at least) could act to
demotivate.

• “Unpacking tasks” into component parts may also help, indeed this
might help people think about obstacles too (although one other study
questioned whether unpacking would help.)

But improving estimation should not just be able improving the estimation
process. Changing or influencing behaviour after the estimation has occurred
can also help people finish earlier and therefore closer to their expected date.

• One technique was to have participants mentally practice doing tasks
every day before undertaking the tasks.

• Another technique was specify where and when tasks would be done.

In both cases participants are being asked to mentally rehearse for their tasks.
These might be akin to morning stand-up meetings.

More studies. . . .

As is often the case when you start reading research studies each study leads
you to more studies. There are some more studies I have not had a chance to
read - in most cases because the studies are locked behind paywalls and the
researches have not made provision for non-academics to access these papers.
What follows is a short list of studies I have not been able to read beyond
the abstract but which I want to include for completeness.

If you don’t want to be late, enumerate: Unpacking reduces the
planning fallacy

(Kruger and Evens 2004)
Another set of experiments which show that if participants are asked to
“unpack” a task, i.e. break it down into the steps they will perform, then
estimation bias is reduced. This fits nicely with one of the papers I reviewed

21

previously (Francis-Smythe and Robertson 1999) which suggests that those
with more control of their own work produce more accurate estimates. That
paper also suggested that some of the effect may be due to better time
management from setting ones own deadline.
The (Ariely and Wertenbroch 2002) study showed that self-imposed deadlines
improved performance. It could be that by engaging with the task - via
unpacking - individuals are setting a form of deadline in their estimate.
Also, the (Buehler, Griffin, and Peetz 2010) study showed that for closed
tasks (and it seems several of the Kruger tasks might be considered closed,
although not all) optimistic deadlines could improve performance. That too
could lead to more accurate estimates.
However the (Buehler, Griffin, and Ross 1994) study suggested that observers,
not actors, produced more accurate estimates.

Underestimating the Duration of Future Events: Memory Incor-
rectly Used or Memory Bias

(Roy, Christenfeld, and McKenzie 2005)
From the abstract it doesn’t seem like this paper adds much to the research
already reviewed from these authors. The abstract does contain a nice
summary of these authors central argument:

“People base predictions of future duration on their memories
of how long past events have taken, but these memories are
systematic underestimates of past duration. People appear to
underestimate future event duration because they underestimate
past event duration.”

Biases and Fallacies, Memories and Predictions: Comment on Roy,
Christenfeld, and McKenzie (2005)

(Griffin and Buehler 2005)
This is a comment piece not research, I include it here because it demonstrates
that there is no consensus on why people underestimate. Roy et al argue one
explanation while Beuhler et al argue another.

22

For the record I find myself more attracted by Beuhlers explanations and
arguments.

The Role of Motivated Reasoning in Optimistic Time Predictions

(Buehler, Griffin, and MacDonald 1997)
Unfortunately I haven’t managed to get a copy of this study but I have read
the abstract and it is references by several of the other studies mentioned
here. This study shows - perhaps unsurprisingly - that when individuals are
motivated to complete a task estimates will exhibit a greater bias.
To quote from the abstract: “Monetary incentives for early completion led
to optimistic predictions, increased attention to detailed future plans, and
reduced attention to relevant past experiences.”

Thanks to the researchers

I’d like to give thanks to all the academics - many of them listed above - who
have arrange to be able to list their studies on their own websites. In a few
cases this has required cunning, they provide draft or working papers while
the final versions on locked up.
And to any academic who bemoans the disconnect between their research
and industry I say: take steps to make your research more available

• Make versions of papers available where they are generally available,
e.g. your website and not behind a Springer paywall

• Write in language which is accessible: reading these studies has required
some serious effort, I understand why many give up

Further research

I would like to make a few suggestions for anyone inclinded to conduct further
research in this field. Without answers to these questions (and others) there
are still significant gaps. These questions may also be taken as point of
caution over the work reviewed.

23

• Do all the mechanisms for inducing lower estimates result in similar
changes for open and close tasks? Specifically: if a financial incentive
is offered and a lower estimate produced do closed tasks still get done
quicker and open tasks as before?

• What can we learn from source code control systems? For example,
if every task (open or closed) is assigned its own branch, the creation
of this branch considered the start time and the closing (or merger to
truck) considered the end can we synthesis an accurate time tracking
system?

• To what degree are software development tasks open and closed? Can
we find ways of making open tasks closed, and if so can we improve
estimation?

• What are the effect of changing the parameters of the task while per-
forming the task?

• Does power also reduce retrospective estimates or is this phenomenon
only apparent in forward looking estimates?

In reviewing all this research it occurred to me that there should be a body
of estimation literature concerning software development, and even Agile/XP
style velocity and Planning Poker. Indeed I have already identified several
studies on estimation in software and, assuming I continue this endeavour,
they will be my next stop.
It also seems to me that estimates by programmers could be a fertile area of
study for both psychologists and computer scientists. I’d like to propose one
experiment:

Take a group of programmers, divide them into three groups and
give them a set of programming tasks to be completed during the
day. One group estimates in time (hours), estimate in abstract
units (points), and on group doesn’t estimate (no estimates).

They are instructed to attempt all tasks in a predefined order
(for consistency) and use a source code control system to check
in their work as they go. They may even be given a test suit to
program against, when they pass the tests they are done.

24

The experiment ends when the day is done or the programmers
complete their tasks.

From the source code control system it should be possible to
tell how much time is spent on each task (look at the checkin
timestamps.) Now we can ask: which group completed the most
work? Which group was fastest? Which was the best indicator of
time spent the hours or points group?

As a further twist the experiment could be repeated with partici-
pants being asked this time to break the tasks down into smaller
pieces before starting to program.

Conclusions?

The more I read of the estimation research the more potential twists and
turns it seems to take. A couple of things do seem to be reasonably consistent:

• The Planning Fallacy holds: although the original paper was short on
quantitive studies the subsequent research has supported the hypothesis

• Vierordt’s Law holds: probably the oldest piece of research on the
subject of estimation - or more correctly time perception - it has stood
the test of time. Indeed one might argue that the Planning Fallacy is
simply a consequence of this law.

• Vierordt’s Law and Planning Fallacy hold prospectively (looking for-
ward) and retrospectively (looking backwards)

• Anchoring is real: the suggestion of a time can influence ones estimates

• The things the industry calls “actuals” would be better called “retro-
spective estimates”

Beyond this I thing get a little more complicated. Drawing on the papers
here and from my last review I am inclined to believe:

25

• Deadlines are more significant than estimates in determining when a
task will be completed. Regular externally imposed deadlines are best
of all.

• Multiple independent estimates (e.g. wide band delphi and planning
poker) can be effective

• A number of practices (commonly followed in software development)
can result in lower estimates, e.g. group estimation, the offer of financial
reward and publicising estimates. Some, like financial rewards, are easy
to eliminate, others like group estimates are probably necessary.

• Feedback can help improve the process but it might simply be providing
an anchoring mechanism

• Closed tasks can be estimated more accurately than Open tasks, al-
though some of the reason for this might be less to do with estimation
than with motivation

• Open tasks (typical in software work) are more difficult to estimate
(i.e. more variance) and early starts can increase the total amount of
work done

• Authority, power, seniority and expert status can all lead to more
optimistic, and therefore less accurate, estimates

• Starting early makes more work: pre-work, preparation, should be
limited in the name of efficiency

• We should seek to make more tasks closed

One way in which all these experiments differ from real-life software devel-
opment is that they deal with fixed tasks. The typical software tester and
programmer faces a moving target. At any point in their work they may find
the task has been changed, or that their assumptions of what is involved are
wrong.
If we cannot estimate fixed, known, tasks with any degree of certainty what
chance have we of estimating moving targets?

26

Personally

At the end - or possible breakpoint - of this literature review I have yet to
find anything which substantially changes my opinion. I may be exhibiting
confirmation bias here. Or it may be that the personal experience coupled
with (largely second hand) research I have been exposed to was largely right.
I continue to believe the estimation process I have described elsewhere (Guide
to iteration planning meetings - http://www.softwarestrategy.co.uk/static/dlgs/GuideToPlanningMeetings.pdf),
a combination of work breakdown, planning poker, velocity measurement
and limited time horizons can work effectively.
I continue to believe estimation can be a useful tool in software developers
but perhaps not in the way if is usually thought of. I believe estimation
is a useful tool in the short run for both loading an iteration, eliciting
requirements/specification detail and prompting design conversations.
I also believe that, due to the changing nature of the tasks we work on,
estimation is not just about estimation, it is about bounding a task and
limiting the work that is done.

(c) Allan Kelly, allan@allankelly.net, 2013

References

Ariely, D., and K. Wertenbroch. 2002. “Procrastination, deadlines, and
performance: self-control by precommitment.” Psychological Science 13 (3).
Buehler, R., D. Griffin, and H. MacDonald. 1997. “The Role of Motivated
Reasoning in Optimistic Time Predictions.” Personality and Social Psychology
Bulletin 23 (3): 238–247.
Buehler, R., D. Griffin, and J. Peetz. 2010. “The Planning Fallacy: Cognitive,
Motivational, and Social Origins.” Advances in Experimental Social Psychology
43: 1–62.
Buehler, R., D. Griffin, and M. Ross. 1994. “Exploring the ‘Planning
Fallacy:’ Why People Underestimate Their Task Completion Times.” Journal
of Personalty and Social Psychology 67 (3): 366–381.

27

http://www.softwarestrategy.co.uk/static/dlgs/GuideToPlanningMeetings.pdf
http://www.softwarestrategy.co.uk/static/dlgs/GuideToPlanningMeetings.pdf

Buehler, R., J. Peetz, and D. Griffin. 2010. “Finishing on time: When do
predictions influence completion times?” Organizational Behavior and Human
Decision Processes (111).
Francis-Smythe, J. A., and I. T. Robertson. 1999. “On the relationship be-
tween time management and time estimation.” British Journal of Psychology
90 (3): 333–347. http://www.ingentaconnect.com/content/bpsoc/bjp/1999/
00000090/00000003/art00002.
Griffin, D., and R. Buehler. 2005. “Biases and Fallacies, Memories and Predic-
tions: Comment on Roy, Christenfeld, and McKenzie (2005).” Psychological
Bulletin 131 (5): 757–760.
Hofstadter, Douglas R. 1980. Godel Escher Bach: An eternal golden braid.
Harmondsworth: Penguin Books.
Jones, C. 2008. Applied Software Measurement. McGraw Hill.
Kruger, J., and M. Evens. 2004. “If you don’t want to be late, enumerate:
Unpacking reduces the planning fallacy.” Journal of Experimental Social
Psychology 40 (5): 586–598.
Roy, M. M., J. S. Christenfeld, and C. R. M. McKenzie. 2005. “Underesti-
mating the Duration of Future Events: Memory Incorrectly Used or Memory
Bias.” Psychological Bulletin 131 (5): 738–756.
Roy, M. M., and J. S. Christenfeld. 2007. “Bias in memory predicts bias in
estimation of future task duration.” Memory & Cognition 35 (2): 557–564.
Weick, M., and A. Guinote. 2010. “How long will it take? Power biases time
predictions.” Journal of Experimental Social Psychology 46.
Zackay, D., and R. A. Block. 2004. “Prospective and retrospective duration
judgments: an executive-control perspective.” Acta Neurobiol Ex (64): 319–
328.

28

http://www.ingentaconnect.com/content/bpsoc/bjp/1999/00000090/00000003/art00002
http://www.ingentaconnect.com/content/bpsoc/bjp/1999/00000090/00000003/art00002

	More research on estimation
	Effects of Deadlines - ``Procrastination, deadlines, and performance: self-control by pre-commitment''
	How Long Will It Take? Power Biases Time Predictions
	Vierordt's Law
	Effect of task length on remembered and predicted duration
	For software development

	Finishing on time: When do predictions influence completion times?
	For software

	Correcting Memory Improves Accuracy of Predicted Task Duration
	Bias in memory predicts bias in estimation of future task duration
	The Planning Fallacy: Cognitive, Motivational, and Social Origins
	More studies….
	If you don't want to be late, enumerate: Unpacking reduces the planning fallacy
	Underestimating the Duration of Future Events: Memory Incorrectly Used or Memory Bias
	Biases and Fallacies, Memories and Predictions: Comment on Roy, Christenfeld, and McKenzie (2005)
	The Role of Motivated Reasoning in Optimistic Time Predictions

	Thanks to the researchers
	Further research
	Conclusions?
	Personally
	References

