
I help companies and teams that create software.

allan's blog - Agile &
Digital Business

Monday, September 12, 2016

Conclusion: Agile & ERP, part 5
The story so far…

Agile & ERP?1.
The Good News about Agile & ERP2.
ERP Culture v. Agile Culture3.
Th Bad News about Agile & ERP 5. 4.

Where does this leave us?

For a modern software developer, who understand agile and is well versed in the current
ways of working encountering an ERP system is like stepping back 20 or perhaps 30
years.

The mindset of in ERP is more akin to the software development mindset when I started
working in IT. It is as if the last 20 years have passed them by - the technology is dated,
the agile revolution hasn’t happened, users should be grateful for what they are given
and the vendor is all powerful.

The deal with ERP is: the ERP system does so very much, why reinvent the wheel?
Writing software is expensive (and fraught with failure) so why not use one we made
earlier?

It’s the software reuse argument written BIG.

The downside is: the ERP is all encompassing, you need to use particular technologies
and these technologies haven’t really advanced in 20 years. The skills are in short
supply. Most importantly: all the ways we have found to make software development
more effective are absent.

Let us be very clear: there are massive benefits from using an off-the-shelf system. ERP
systems are big, really big, and complex, general ledgers, multi-country/multi-currency
payroll, etc. etc. Why would you want to rebuild this stuff?

But: there are also massive costs.

The ultimate question is: are the benefits greater than the costs?

Its worth repeating what Capers Jones says at this point:

“As a rule of thumb, if COTS [Common Of The Shelf] packages require
modification by more than 25% it may be less expensive in the long run to
build the same kind of application.” Applied Software Measurement, Jones,
2008

Unfortunately he doesn’t elaborate on how the 25% is calculated, he probably means
function points. He continues:

“Package modification is a high-risk activity with a significant chance of failure
and disaster. Not only is productivity normally low for modifying purchased
packages, but if the vendors are reluctant to provide support, modification can
easily be more expensive than customer development.” Applied Software
Measurement, Jones, 2008

When answering this question please remember licenses for ERP systems are far from
cheap, and they reoccure. Plus, vendors may well charge extra fees to support parts of
the system which have been changed or to ensure backward compatibility.

Once installed clients can be very, very, reluctant to update ERP system. This is hardly
surprising once you realise that “configuring” a system like SAP may mean having
developers change SAP code in the base system. If SAP release a new version they
may have changed that code, you are lucky if you can get away with a merge from hell.

When you buy an ERP system you buy an existing legacy system. You then attempt to
configure it to be your legacy system. (See my Peugeot post.)

Allan Kelly

allankelly2015

Contributors

Continuous Digital: the alternative to
projects

Xanpan

Little Book of User Stories

Business Patterns

Changing Software Development

Agile Reader

My books

Sign-up for my newsletter

Newletter sign-up

Upcoming events with Allan
Kelly
Unicom: 21 September at London

Planning for Value
Private: 15 September at Oxford

Agile Cambridge
Software Acumen: 27-29
September at Cambridge

Agile Bristol
Agile Bristol: 12 September
Evening at TBA

Agile Dice Game
TechCityCoffee: 25 July 2017

widget @ surfing-waves.com

I am at...

Upcoming events

Events RSS feed

Speaking events

OnTwitter: @allankelly.net

My Homepages: allankelly.net

More

Twitter feed

More Next Blog» allankellynet@gmail.com New Post Design Sign Out

allan's blog - Agile & Digital Business: Conclusion: Agile & ERP,... http://allankelly.blogspot.co.uk/2016/09/conclusion-agile-erp-part-...

1 of 3 8/3/17, 1:26 PM

Posted by Allan Kelly at 10:42 am

This sounds like a bad deal but its a deal that makes sense for a lot of companies and
has done for 20 or 30 years.

Now, here is my conclusion:

20 years ago buying a legacy ERP system and configuring it to be your own
legacy may well have made financial sense.

But in the last 20 years technology has advanced, not just the CPUs but the
programming languages, the programming tools and even the programming
processes.

Buying a legacy ERP system today means buying into a legacy development
process with legacy tools. You step back 20 years.

In the last 20 years the tools and techniques have got a lot better. While
buying an ERP system may look like a sensible decision you also shackle
yourself to 20 year old tools and processes.

The tools and processes have improved so much in the last 20 years that the
equation has changed. Modern approaches (i.e. agile and test driven) using
modern technology means the cost and time gap between a) developing your
own system using modern techniques (including microservices, existing
libraries, open source, etc.) and b) choosing legacy ERP system (reoccuring
license fees plus configuration costs) is far smaller than it was.

I conjecture that the gap is getting smaller as we speak.

Since ERP systems last decades the 20 year old ERP system you are buying
today might be expected to last another 20 years. Who knows how much
better things will get in two decades.

This also means there is a market opportunity for “modern ERP” systems
which use modern technologies (Java, JavaScript, Micro-services, etc.) to
support modern working practices. Microsoft, Oracle and SAP are all trying to
move forward but the legacy is very profitable.

Finally, one might ask: given all these problems, and the changes in technology why do
companies buy these systems?

Nobody ever asked my opinion on this so I can’t really say but let me float an idea.

Only companies of a certain size, say $1 billion revenue can afford these systems. When
a company reaches that size they are expected to buy such a system - having an
expensive system is a sign that your company has arrived.

These systems are driven by the finance departments, the CFO. As companies get big
they need such systems to control the company. But also, the CFO of a $1bn company
wouldn’t look serious if he didn’t have one - after all, all the other $1bn companies have
an ERP system so why not yours?

If you are the CFO of a $1bn company without an ERP system and something goes
wrong it will look irresponsible. Having an expensive ERP system allows the CFO to say
“We followed best practice and bought Oracle”. It reduces the risk of the CFO losing their
job.

And buying an ERP system allows the CFO to claim more resources for his department.

And it allows the CFO to say at his next job interview “I introduced an ERP system to a
$1bn company.”

So the next time you get appointed CFO of a company which as just broken the $1bn
revenue barrier and you find there is no ERP system in place what are you going to do?

Engineers might think: I’ll set up a small team and start growing our own ERP system
using modern technology.

To the engineering mind that approach stands the best chance of working and is
financially the best route.

But it is also high risk simply because nobody else does it.

Everyone else says: “I’ll call SAP, I’ll spend a lot of money with them, Accenture, Cap-
Gemini and CSC. When it goes wrong I can blame them. After all, thats what everyone
else does so doing anything different would be high risk.”

Embed View on Twitter

Tweets by @allankellynet

18h

 allan kelly Retweeted

Pro tip: if your method is 225 lines long,
then you should probably refactor your
code ASAP. I frown at methods over 50
lines.

 allan kelly Retweeted

Get the new book from Allan Kelly
(@allankellynet) for just $5 on LeanPub for

Anna Filina
@afilina

Multinewmedia
@Multinewmedia

Follow by Email

Email address... Submit

Subscribe To

 Posts

 Comments

Followers (39) Next

Follow

Followers

Alltop

Software has diseconomies
of scale - not economies of
scale

Some things can never be spoken

Programmers without TDD will be
unemployable by 2022 (a prediction)

Why do devs hate Agile?

Dear boy, have you ever tried
programming?

Banking systems stink - the pain of an
botched HSBC release

Popular Posts

► 2017 (27)

▼ 2016 (43)

► December (3)

► November (2)

► October (3)

▼ September (5)

Conclusion: Agile & ERP, part 5

The Bad News: Agile & ERP, part 4

Blog Archive

allan's blog - Agile & Digital Business: Conclusion: Agile & ERP,... http://allankelly.blogspot.co.uk/2016/09/conclusion-agile-erp-part-...

2 of 3 8/3/17, 1:26 PM

Newer Post Older Post

3 comments

Top comments

Claysnow Limited 10 months ago - Shared publicly

"having an expensive [ERP] system is a sign that your company has arrived" allan kelly
http://buff.ly/2cTdrxT

 ·

Reply

Dan Haywood 10 months ago - Shared publicly

Thankfully, there are one or two billion dollar companies that think differently.
http://isis.apache.org/powered-by.html#_powered-by_estatio

 ·

Reply

Nicolas U 10 months ago - Shared publicly

That is very true. Nothing to add :)

Add a comment as Allan Kelly

Home

Subscribe to: Post Comments (Atom)

Culture problems: Agile & ERP part 3

The Good News - Agile & ERP, part 2

Agile & ERP? - part 1

► August (2)

► July (4)

► June (7)

► May (4)

► April (4)

► March (2)

► February (3)

► January (4)

► 2015 (42)

► 2014 (41)

► 2013 (43)

► 2012 (45)

► 2011 (53)

► 2010 (70)

► 2009 (90)

► 2008 (85)

► 2007 (79)

► 2006 (77)

► 2005 (62)

Syndicated to Java Code Geeks

JavaCodeGeeks

(c) Content Allan Kelly. Simple theme. Powered by Blogger.

allan's blog - Agile & Digital Business: Conclusion: Agile & ERP,... http://allankelly.blogspot.co.uk/2016/09/conclusion-agile-erp-part-...

3 of 3 8/3/17, 1:26 PM

