
The Agile 10 Step Requirements Model   4-Feb-11 
 

(c) allan kelly - http://www.allankelly.net  Page 1 of 11 

The Agile 10 Step Requirements Model 
In the beginning, when Agile first hit the headlines, it was mainly a story 
about developers doing technical practices.  Weird things like pair-
programming, writing tests first and other "extreme" stuff.  In time Agile has 
become a story about processes - iterations, stand-up meetings and such.  
Extreme went way and it became respectable to "Scrum." 

To date Agile has been weaker on requirements.  Agile has a message for 
developers and project managers but less so for Business Analysts and 
Produce Managers.  Agile as we know it currently rests on two pillars: 
technical practices and iterative processes.  Requirements management is the 
missing pillar. 
So far the requirements pillar has one big idea and a whole host of small 
ideas.  The big idea is User Stories.  The hinterland includes things like roles 
and Mike Cohn's INVEST mnemonic (Independent, Negotiable, Valuable, 
Estimatable, Small and Testable) but not a lot more. 
Then there are the small ideas - small because unlike iterations, TDD or even 
User Stories, they are not so widely adopted or even well know.  Many of 
these exist in isolation; they don't link up to each other or User Stories. 

The more I thought about this problem the clearer it seemed to me: these bits 
weren't joined up.  In 2009 I had sketched out a model I call the "Agile 10 
Step", its a model I'd like to present here.  Explaining the model in depth is 
beyond the scope of this article - here I will confine myself to a brief 
overview. 
In future articles I hope to elaborate on this model to bring to better link the 
requirements process up with the rest of the Agile world.  Indeed, some of 
the points raised by the model are already addressed in pieces I have already 
published 
The model can't position every single requirements technique or tool ever 
created, that would be asking too much, but it can highlight some of the key 
ones. 

Use of the word project 
The PRINCE2 project management guide provides one narrow definition of a project: 
"A temporary organisation that is needed to produce a unique and predefined outcome 
or result at a pre-specified time using predetermined resources." (Commerce, 2005). 
Strictly speaking then a "project" is a well defined piece of work.  Still, it has become 
commonplace to refer to almost any piece of software development work as a 
"project".  For the purposes of this document this wider definition is used liberally in 
keeping with the industry norms. 
That said, I am contributing to an industry problem.  Again and again in software 
development teams I see a "project" can  be anything from a single bug fix lasting a 
few days up to major change initiatives with a timeline measured in months if not 
years. 



The Agile 10 Step Requirements Model   4-Feb-11 
 

(c) allan kelly - http://www.allankelly.net  Page 2 of 11 

The Three pillars of Agile 
In the early days of Agile it was the technical aspects that received most 
attention and generated most excitement: test driven development, pair 
programming, refactoring and so on.  As Agile matured the process and 
project management aspects received more attention: iterations, planning 
meetings and such. 
Requirements form the third pillar of Agile.  Yet the requirements element 
hasn't received the same attention as the first two.  Teams can achieve some 
element of Agile with only one or two pillars but for maximum effect and 
greatest stability all three are required. 

 
Figure 1 - Three pillars of Agile supporting high Agility 
These three pillars provide the operations base on which organizations can 
push to portfolio and strategic Agile. (See (Kelly, 2010b) for more about 
Agile at the portfolio and strategy level.) 

Principles for Requirements in an Agile world 
The good news is Agile doesn't invalidate whole swathes of requirements 
engineering the way it can project management.  There are many good books 
on requirements: how to find requirements, understand requirements, capture 
requirements and so on.  The analysis side of this stands up.  Read a good 
requirements or business analysis book and most of it is still valid, e.g. 
(Cadle et al., 2010, Alexander and Beus-Dukic, 2009). 

Te
ch

ni
ca

l p
ra

ct
ic

es

Pr
oj

ec
t &

 P
ro

ce
ss

R
eq

ui
re

m
en

ts
 M

an
ag

em
en

t

Agile Portfolio Management

Agile Strategy



The Agile 10 Step Requirements Model   4-Feb-11 
 

(c) allan kelly - http://www.allankelly.net  Page 3 of 11 

In order to discuss requirements more fully it helps to set down some 
overarching principles: 

• Business value focused: requirements are a means to an end.  The overall 
objective is to deliver business value.  Creating requirements is an 
analysis activity that helps identify and understand business value creation 
so it can be communicated to development teams. 

• Goal directed projects: because requirements are emerging, being 
completed and disappearing, and because the environment is changing 
projects cannot be measured on "scope complete" criteria.  Another 
measure is needed.  Instead progress needs to measure as progress towards 
some overarching goal not fraction complete. (More on goal directed 
projects in (Kelly, 2010d)). 

With a goal clear requirements can be discovered by working backwards.  
Requirements are the things that will move the organization from where it 
is today towards its goal.  Thus it makes sense to start with the desired 
outcome and work back. 

Of course it is much easier to say "goal directed" than to realise it.  Many 
projects start with vaguely defined goals.  In these cases discovering the 
goal is a little like panning for gold.  In amongst all the ideas circulating 
some goal needs to be found.  Naturally, this makes working backwards to 
find the requirements even harder.   

• Customer/End User involvement: those who will actually use the end 
product need to have a voice in how it is built, and need to have early 
sight of what is being created.  There are two good reasons for this: as the 
people who perform the work they are best placed to know how things 
should work and describe the real-life environment to the development 
team.  Second, as the people who will need to use the software their 
willingness to use the end product is critical.  Involving them early and 
often is the simplest way to do this. 

• Iterative: in common with the rest of Agile requirements require an 
iterative approach.  One look will not find all the requirements, multiple 
passes are required and things will change (Previous writing (Kelly, 2008, 
Kelly, 2004) contains a discussion of why requirements change.)  Thus all 
aspects of requirements analysis are on going and in parallel with 
construction. 
Identification, capture and communication starts before the first line of 
code is cut and continues at least as long as development continues.  
Modern market economies do not stop while software is created so 
requirements continue to change and evolve.  Priorities and values change. 
Consequently the collection, organization, prioritization needs to be cheap 
and individual requirements statements disposable.  If individual 
requirements are expensive to create they will take on a life of their own.  
If they are cheap then there will be less agonising about disposing of them 
when things change. 

• Just in time: there is little point in creating and storing masses of 
requirements in anticipation of the day they will be built.  Requirements 



The Agile 10 Step Requirements Model   4-Feb-11 
 

(c) allan kelly - http://www.allankelly.net  Page 4 of 11 

sitting on the shelf go off - the market and business environment changes.  
Since requirements are an ongoing process there is simply no need to 
create a store so we adopt a just-in-time principle instead. 

• Dialogue over document: communication of requirements is primarily a 
dialogue rather than an exhaustive document.  Documentation can play 
several useful roles in the requirements process but it should not attempt 
to be the definitive word on what needs doing. 

• Analysis not synthesis: the process of deciding what needs doing is 
primarily one of analysis.  The process of building something is primarily 
synthesis.  No amount of analysis will create synthesis, the individuals 
who are best suited to analysts are usually different to those who are best 
at synthesis.   

Requirements should not specify what is to be built, or how it is to be 
built, i.e. solutions, only what is needed to move towards the goal.  Of 
course some requirements specify constraints on the construction rather 
than functionality.  Similarly the individuals who know most about the 
needs may work with the development team to design a review a proposed 
solution. 

Who manages requirements? 
The subject of just who is responsible for managing the requirements is 
worth an article in itself.  One of the main reason for IT project failure has 
been lack of user involvement.  I'm sure many readers have seen it: a 
customer asks for a system, some requirements are written and the IT 
department disappear for six months.  When they resurface with the finished 
system it might bear little resemblance to what was actually wanted - 
assuming of course that what was actually wanted hasn't changed in the 
meantime. 

Agile's answer to this was to involve the customer, make them central to the 
development process.   

In Extreme Programming the role of the person who specified what was 
wanted was actually called "the customer."  Yet while many XP advocates 
seek to fill this role with an actual customer this is not always possible.  
Indeed, the original XP case study, the Chrysler C3 project, staffed this role 
with a Business Analyst. 

Scrum calls the person who really wants the system to get involved and play 
the Product Owner role.  But there are, at least, two problems with this 
model.  Firstly the person who plays the Product Owner may not have the 
skills and experience necessary to play the role - just because they want the 
software doesn't mean they know how to work with a development team. 
Second, and a common complaint of Scrum teams, is a lack of time from the 
person playing the Product Owner.  If the person in question is important 
enough to want the software they probably have other things to do.  Spending 
their days working with unwashed developers may not be high on their 
priority list. 



The Agile 10 Step Requirements Model   4-Feb-11 
 

(c) allan kelly - http://www.allankelly.net  Page 5 of 11 

Indeed, the lack of time and consequent stress and pressure was highlighted 
in a study as long ago as 2004 (Martin et al., 2004).  Equally worryingly is 
the focus on a single "customer" can result in other stakeholder needs being 
overlooked - a point made by Tom Gilb.  Even if customers are put above 
and beyond stakeholders there is still a need to consider multiple customers.   
For example, Microsoft Word has several million customers.  While these 
customers may be segmented in various groups (Home, Business, Education, 
etc.) something needs to be done to understand competing needs, and 
priorities still need to be decided. 
In short, the "end user" as requirements gatherer and decider model - whether 
the XP or Scrum version has problems.  What is needed is a requirements 
professional who can take on these issues and proxy for the final 
customer/users. 
Keeping with the Scrum model this article will use the generic Product 
Manager title to refer to the person(s) who decide what the software needs to 
do.  It is common to find a Business Analyst or Product Manager performing 
the role, at least on a day to day basis.  For more on these roles see my earlier 
Overload articles (Kelly, 2010a, Kelly, 2009b, Kelly, 2009a).  Other titles 
like Requirements Engineer or Analyst are also used for those filling these 
roles too but the basic skills set remains the same.   

One role which is frequently asked to work on requirements but probably 
should not is that of Project Manager.  While some Project Managers move 
between Business Analysis or Product Manager roles others confine their 
role to delivery of projects.  Sometimes these individuals are asked to take 
part in the requirements gathering process.  The problem is that requirements 
elicitation is not part of most Project Manager training.   

Take for example the UK PRINCE2 standard project manager qualification.  
PRINCE 2 assume that what is wanted is known, the method and techniques 
focus on breaking the work down, risk management, scheduling and the like.  
It does not cover requirements analysis or capture in any depth. 

10-Step model overview 
The 10 Step Model shown in Figure 2 outlines framework for aligning the 
work of requirements engineers - usually a Business Analysts or Product 
Managers, often called a Product Owner with Agile development.  The 
model may be considered a process, a checklist or just an aide-memoire.  The 
model attempts to relate various aspects of Agile requirements analysis 
advocated by different authors. 
The model assume the classic Agile/Scrum/XP iteration, or sprint, time 
boxed development episodes together with the product backlog / sprint 
backlog mechanism defined in Scrum (Schwaber and Beedle, 2002) and XP 
(Beck, 2000).  These mechanisms can be seen in the lower right of the 
diagram.  Since much has been written about this cycle already this 
description will focus on the wider requirements process.   



The Agile 10 Step Requirements Model   4-Feb-11 
 

(c) allan kelly - http://www.allankelly.net  Page 6 of 11 

  
Figure 2 - 10 Step Model 

1. Objective: the objective is given from outside the model - usually from 
higher up the management chain.  It is the reason the team are brought 
into being, the reason the project is started, it is the goal the work is 
aimed towards. (See (Kelly, 2010d) for a longer discussion of this.) 

2. Stakeholders: stakeholders are those people, and groups of people, who 
have some interest in the work being undertaken.  Stakeholders have their 
own objectives for the work which might, or might not, align with the 
objective.  Some stakeholders have more stake than others, and some are 
more significant than others. 

Story selection &
prioritisation

Breakdown

1
Objective

3
Vision

2
Stakeholders

4
Roles

5
Personas

6 Create &
Manage User
Stories etc.

7 Acceptance
Tests

8
Development

9
Delivery

10 Value
management

Development
team

Product
Backlog

Sprint
Backlog



The Agile 10 Step Requirements Model   4-Feb-11 
 

(c) allan kelly - http://www.allankelly.net  Page 7 of 11 

This step is not confined to stakeholder identification, this step includes 
analysis of stakeholder "stake": what stakeholders want from the system, 
the constrains they impose, how it will create value for them and more. 
The stakeholders group includes more than just customers.  To start with 
stakeholders can be split into two large groups: internal stakeholders and 
external stakeholders.  Within corporate IT departments the former will 
be the larger group while in software companies the latter will be the 
larger group. 

Within the external stakeholders group will be the ultimate customer of 
the organization.  More often than not this group will also benefit from 
segmentation into specific sub-groups. 

3. Vision: while the objective is owned by the powers that created the team 
the vision is created and owned by the team itself.  The vision both 
expands on the objective and answers the objective.  If the objective 
specifies a problem that needs solving the vision gives an answer. 

4. Roles: roles narrow of the stakeholder base to consider those who will 
actually interact with the system as envisaged by the vision.  It is role 
holders who interact with the system and thus their needs that need to be 
considered when determining functionality. 

5. Personas: personas expand and elaborate certain roles, adding texture so 
requirements analysts, user design specialists and software developers 
can better understand and empathise towards those who will use the 
system.  Not all roles will be developed into full personas, and different 
personas will come to the fore at different times. 

As analysis proceeds from stakeholders through roles to personals there 
is a natural narrowing shown in Figure 3 



The Agile 10 Step Requirements Model   4-Feb-11 
 

(c) allan kelly - http://www.allankelly.net  Page 8 of 11 

 
Figure 3 - From stakeholders to personas 

 

6. Create and manage stories: when objectives and users are well 
understood it is time to start specifying what they system will do.  
Whatever the format used to describe the specifications something needs 
to be created.  Once more than a few requirements have been captured 
there becomes a need to manage what has been created.  This is the step 
into which much of the existing Agile literature fits: writing User Stories, 
Managing the Product Backlog and so on.  If the 10-step model is being 
used as a process these process occur in tandem. 

7. Acceptance tests: once the essence of a story is captured some 
description of what constitutes done for the story needs be given.  How 
will developers know to stop writing code? Testers know when to pass, 
or fail, functionality? And requirements specialists know something has 
actually been done?  The answer to all these questions is a set of criteria 
that determines when a story is complete. 

8. Development: once a need is identified, understood and acceptance 
criteria specified it is time to actually do the work, develop the software. 
(Little needs to be said about this particular step because much has 
already been written about how development happens in Agile teams.) 

9. Delivery: once a need is met the product needs to be delivered to the 
customer.  For some systems this is a trivial step, for others it is 
complicated and involved.  Delivering a system in multiple discrete steps 
is very different from delivering a big-bang all or nothing.  Delivering a 

The work can deliver 
value to many 
stakeholders

Only some of the 
stakeholders have 
roles which will use 
the product directly

Personas give greater 
understanding of key 
roles

Stakeholders

Roles

Personas



The Agile 10 Step Requirements Model   4-Feb-11 
 

(c) allan kelly - http://www.allankelly.net  Page 9 of 11 

system as a shrink-wrapped installable software on a CD is different to a 
software-as-a-service model. 

10. Value Management: last but by no means least is the need to close the 
loop and check that value is actually delivered.  The key here is linking 
the finished product back to stakeholders' needs and objectives.  Few 
organizations can place a dollar amount on a single piece of functionality, 
for some it may be impossible; but since all requirements start with some 
stakeholder it should be possible to link return to the stakeholder and 
check whether the thing that is delivered creates value. 

What's the Story? 
The basic unit of requirements specification and thus development work, is termed a 
Story.  The format and style of the story can vary widely.  Many teams like to use the 
User Story format: "As a [Role] I can [Action] So that [Reason]".  This format is 
commonly associated with Mike Cohn, although Cohn himself credits Rachel Davies 
(Cohn, 2004), who in turn credits the Connextra development team collectively. 
I like to widen this format to allow for Personas and Stakeholders: "As a 
[Role|Stakeholder|Persona] I can [Action] So that [Reason]."  Without Stakeholders 
some User Stories become tortuous as the writer attempts to give a reason to a role.  
Personas help bring focus to story and add more background texture. 
Although widely taken to be part of Scrum this format is absent from the original 
Scrum texts (Beedle et al., 1998, Schwaber, 2003, Schwaber and Beedle, 2002).  Nor 
are User Stories present in Beck's Extreme Programming (Beck, 2000).  Beck 
discusses the idea of a "development story" without specifying how it is written. 
While User Stories are perhaps the most widely used format some teams still prefer to 
use Use Cases (Cockburn, 2001) or make no attempt to follow a particular format or 
style. Still other teams use Planguage (Gilb, 2005), while particularly useful for non-
functional requirements Planguage is not widely known and requires a particular skill 
to use effectively. 

For the purposes of this discussion the term story will be used generically to cover all 
possible formats.  Story is taken simply to mean: a small piece of development work 
to be undertaken. 

From stakeholders to value management 
At first site it may seem odd for value management to appear at the end but 
this step is about closing the loop, ensuring value was delivered not just 
promised. There is a symmetry between the stakeholder and value 
management steps.  Stakeholders are ultimately the root of all requirements, 
no matter how technical.  At the end of the day someone, somewhere, must 
want something from the system.  For this person, the stakeholder, there is 
value (perhaps not financial) to having this thing done. 

Value can only be assessed if the stakeholders are known.  If nobody wants 
anything doing to a system then nothing should be done. If value cannot be 
assigned to work then there is no reason to incur the cost. 
The stakeholder might not know what work they want doing, and they are 
often oblivious to the technical aspects, but then, there is no reason why they 



The Agile 10 Step Requirements Model   4-Feb-11 
 

(c) allan kelly - http://www.allankelly.net  Page 10 of 11 

should.  The route between stakeholder and change may be complex and 
non-obvious but it must exist.   

Stakeholder analysis and value management are perhaps the two most 
important steps and the two which certainly deserve more attention in future. 

More tools and techniques 
There is certainly no shortage of tools and techniques available to the 
contemporary business analyst or product manager for analysing needs.  
Whether it is stakeholder analysts, win-loss reports, business analysts 
modelling, UML diagrams or CATWOE the tools are available.  This model 
does not try to show where each and every tool may be used: not only would 
it take too long but there are sometimes no clear answers. 

What the model does do is firstly, place outputs and expectations at the start 
of the process: objective and stakeholders should provide a way in here.  
Secondly it shows where these tools can be used: the stakeholders and roles 
steps are about understanding customers and needs and it is in these stages 
that most analysis tools come into play. 
While some tools will work within single steps in this model other tools will 
span multiple steps.  The truth is, requirements discovery is not a neat and 
tidy exercise that occurs in clear cut chunks.  Like code development it 
involves intuition, insight and inspiration which cannot be scheduled. 
As a result those charged with discovering, understanding and 
communicating activities are likely to have several different activity streams 
occurring at once, overlapping and informing one another. 

For example, in tandem with this model forward looking plans and scenarios 
need to be maintained.  Release plans and product roadmaps (Kelly, 2010c) 
are both informed by the information gathered in the model and feed into the 
model. 

Useful? 
This is a deliberately brief explanation of the 10 Step model, I hope readers 
find the model useful and I would appreciate any feedback on the ideas.  For 
me the model has already filled its original intention of helping explain 
different aspects of Agile requirements. 
I certainly find it helps explain and pull together some of the ideas floating 
around the discussion on Agile Requirements.  Although it is simplest to 
explain as a process I shy away from calling it that.  Rather I prefer to think 
of it as a check-list and a guide 
Perhaps it is better still to view this model as a starting point for your own 
model.  Which steps would you remove? Which would you add? Would you 
reorder any? 

References 
ALEXANDER, I. & BEUS-DUKIC, L. 2009. Discovering Requirements, Chichester, 

John Wiley & Sons. 



The Agile 10 Step Requirements Model   4-Feb-11 
 

(c) allan kelly - http://www.allankelly.net  Page 11 of 11 

BECK, K. 2000. Extreme Programming Explained, Addison-Wesley. 
BECK, K. & ANDRES, C. 2004. Extreme Programming Explained: Embrace 

Change, Addison-Wesley. 
BEEDLE, M., DEVOS, M., SHARON, Y., SCHWABER, K. & SUTHERLAND, J. 

1998. Scrum: A Pattern Language for Hyperproductive Software 
Development. Pattern Languages of Program Design "PLoP" Allerton Park 
Monticello, Illinois. 

CADLE, J., PAUL, D. & TURNER, P. 2010. Business Analysis Techniques: 72 
Essential Tools for Success, Swansea, BISL (BCS books). 

COCKBURN, A. 2001. Writing Effective Use Cases, Addison-Wesley. 

COHN, M. 2004. User Stories Applied, Addison-Wesley. 
COMMERCE, O. O. G. 2005. Managing Successful Projects with PRINCE2, London, 

TSO  (The Stationary Office). 
GILB, T. 2005. Competitive Engineering, Butterworth-Heinemann. 

KELLY, A. 2004. Why do requirements change? ACCU Overload. 
KELLY, A. 2008. Changing Software Development: Learning to Become Agile, John 

Wiley & Sons. 
KELLY, A. 2009a. On Management #5 - The Product Manager. ACCU Overload. 

KELLY, A. 2009b. On Management #6 - The BA role. ACCU Overload. 
KELLY, A. 2010a. "I'm a BA get me out of here" - the role of the Business Analyst 

on an Agile team. ACCU Overload. 
KELLY, A. 2010b. Objective Agility [Online]. Modern Analyst. Available: 

http://www.modernanalyst.com/Resources/Articles/tabid/115/articleType/Arti
cleView/articleId/1502/Objective-Agility-what-does-it-take-to-be-an-Agile-
company.aspx [Accessed December 2010 2010]. 

KELLY, A. 2010c. Three Plans for Agile [Online]. Toronto: RWNG. Available: 
http://www.requirementsnetwork.com/node/2663 [Accessed December 2010 
2010]. 

KELLY, A. 2010d. Time for Goal Driven Projects [Online]. Toronto: RQNG. 
Available: http://www.requirementsnetwork.com/node/2597 [Accessed 23 
December 2010 2010]. 

MARTIN, A., BIDDLE, R. & NOBLE, J. Year. The XP Customer Role in Practice: 
Three Studies. In:  Agile Development Conference, 2004 2004 Salt Lake City, 
Utah. 

SCHWABER, K. 2003. Agile Project Management with Scrum, Microsoft Press. 
SCHWABER, K. & BEEDLE, M. 2002. Agile Software Development with Scrum, 

Addison-Wesley. 
 

 


