
The Agile Spectrum 20-Apr-11

(c) allan kelly Page 1 of 10

The Agile Spectrum
The Agile is a broad church. It includes a lot of tools and techniques, some
applicable to some teams and some environments and some applicable
elsewhere. Anyone who thinks hard about how to measure Agility quickly
realises it cannot be measured by adoption of practices, it needs to be
considered on outputs and abilities.

Agile is sometimes simply defined as "not the waterfall." This is a poor, if
understandable, definition. Unfortunately, this means that any process that
doesn't follow the classic waterfall strictly can be considered Agile. Adding
to the confusion "Waterfall" can cover a number of different approaches,
stage gate models like DoD 2167 and 2168 and all encompassing methods
like SSADM.

In companies where strong, documentation centric, procedures have been
hoisted on development teams Agile is sometimes seen as a "get out of jail
free" card. Simply saying "this project is Agile" is seen to exempt work from
company procedures. Unfortunately, this card is also used as a cover for
cowboy development.
In truth there is a spectrum with strict-waterfall at one end and "pure Agile"
at the other - Figure 1. Since waterfall never really worked that well very
few teams are at the strict waterfall extreme. In his analysts of software
development projects over 20 years Capers Jones suggests that in general
requirements are only 75% complete when design starts and design is a little
over 50% complete when coding starts (Jones, 2008). He goes on to say that
as a rule of thumb each stage overlaps by 25% with the next one.

Figure 1 The spectrum from Strict Waterfall to Pure Agile almost
everyone is somewhere inbetween

It would seem reasonable that the pure Agile end of the spectrum is equally
sparsely populated. Whether because few teams need to be so extremely
Agile, or whether because experience and tools have yet to allow such a
degree of Agility, some staged elements exist in many projects.

More than one software development team has encountered the situation
when the team want to be more “Agile”, the organization and management
might even be asking them to be more “Agile” but, there are still many
“requirements” in a big document and the expectation is that all these will be

Strict
Waterfall

Pure
Agile

More Waterfall than
Agile

Becoming more
Agile

The Agile Spectrum 20-Apr-11

(c) allan kelly Page 2 of 10

“delivered.” Experience and anecdotal evidence suggest this scenario is
faced by many teams.

This mismatch arises when the organization is largely waterfall but the
development team are trying to work Agile. I have consulted with
companies where senior managers believe Agile is only a delivery process
for developers. Business case, requirements, design and even testing is
waterfall, just the bit in the middle is Agile.
This document attempts to both understand the different degrees of Agility
and provide teams with a way of resolving the requirements-delivery
mismatch.

Three Agiles
On close inspection Agile has, at least, three styles: iterative, incremental and
evolutionary, shown in Figure 2. These are largely governed by the
development teams relationship with the requirements and whether the
organization wants work defined in advance or prefers goal directed working.

Figure 2 - Three levels of Agile
As we shall see in a moment, these three styles occupy different places on the
spectrum. But, in truth, there is no clear cut divide between iterative and
incremental, incremental and evolutionary or even iterative and evolutionary.
The three styles all overlap and fade into one another.

Iterative Development - Salami Agile
Working in bite-sized chunks from predetermined requirements with one big
delivery at the end.

Evolutionary development

Iterative development

Incremental development

Development team work in short iterations
Major releases infrequent
Formal requirements document (Salami Sliced)
Formal change request process in place
Limited automatic testing

Development team work in short iterations
Minor releases frequent
Formal requirements document start
development with change request incorporated
High degree of automated testing

Development team work in short iterations
Regular releases
Requirements emerge as team incorporates
feedback and discovers new opportunities
Testing almost entirely automated

The Agile Spectrum 20-Apr-11

(c) allan kelly Page 3 of 10

Iterative Agile refers to the practice of undertaking projects in small, bite-
sized chunks. Every two-weeks (or so) an iteration completes and the total
amount of work is burnt down on a chart. Customers will probably be shown
the latest version of the software at the end of the iteration although this is
little more than a demo. Most likely there will be a single software release at
the end of the work - followed by several "maintenance" releases.

At the start of work there is a big requirements document - the work to be
done is, at least in theory, defined in advance. Someone, perhaps a previous
project, perhaps external consultants, has created a list of the features and
functionality the new system must, or should, have. The development team
are expected to delivery, all of it, or nothing.
The approach here is to see the big requirements document as an uncut
sausage of Salami (long and dense). Someone on the team - preferably
someone with Business Analysis skills but it could be a developer, project
manager, or someone else - needs to slice the requirements into thin pieces of
salami (story) for development.

There is no point in slicing the whole salami in one go. That would just turn
a big requirements document into a big stack of development stories. The
skill lies in determining which bits of the document are ready (ripe) for
development, which bits are valuable, and which bits can be delivered
independently.
Some slices of salami will be thicker than others but that's just the nature of
the world. Over time, with more skill at slicing salami it will improve and
slices will be thinner.

Working in this fashion opens up the ability to accept change requests
relatively easily. But because the work has been set up as a defined project
with "known" requirements these opportunities probably aren't exploited to
the full. Similarly, opportunities to remove work will also appear - some
slices of salami may be thrown away - but again this will depend on how
rigidly the project seeks to stick to the defined work.

As well as the requirements document there are probably some estimates
somewhere - maybe even a Gantt chart, which has to be updated to maintain
the illusion that it is useful.
However, this is the land where the burn-down chart reigns supreme. There
is a nominal amount of work to be done and with each iteration there is a
little less. Such empirical measurement is likely to provide a good end-date
forecast.
Salami Agile is the basis for incremental development and occurs somewhere
about the middle of the spectrum. To go further towards pure Agile work has
to be based less on a shopping list of features and more on overarching
overall objective for the work.

Incremental development
Working in bite-sized chunks from predetermined requirements with regular
deliveries and accepting changes

The Agile Spectrum 20-Apr-11

(c) allan kelly Page 4 of 10

Salami slicing is still prevalent in incremental, at least during the early
stages. Work is completed in bite-sized chunks and periodically delivered to
customers to use. These events might, or might not, occur in tandem. While
a team might work in two-week iterations deliveries might only occur every
two months.
The pieces of salami are delivered to the customer early, and over time
customers start to realize they don’t need some things in the original
requirements document so some slices can be thrown away some and some
salami left unsliced and unused.
This model capitalizes on the flexibility provided by eating salami rather than
steak. Requirements which were not though of can be easily incorporated,
others can be changes, enlarged or shrunk.

The iterative approach still assumes the original requirements are correct so
not implementing them all, or changing what is done is a sign of earlier
failure. In incremental development changes are seen positively and
reductions in scope are seen as savings - a sign the model is working.

That real live users are getting access to the software early is valuable to the
business. It also means user insights and requests are inevitable. Still there
is a major requirements definition somewhere and while the team can accept
change requests easily it is still expected that one day the team will be done.

Burn-down charts might still be used to track progress but at times they may
appear as burn-up charts as work is discovered.

Tensions arise when the team are instructed to refuse changes, or themselves
insist on continuing to salami slicing the original requirements document but
users and customer are asking for changes based on their experience. In
other words, the users and business have changed their understanding but the
team do not, or are not allowed to, change theirs.
There is no hard and fast line between iterative and incremental, they are just
points on the spectrum - with incremental to the right of iterative by virtue of
delivering more often. Perhaps the hallmark of incremental is that the team
delivers on a regular schedule. When each delivery is a big deal, a special
occasion, then things are really just iterative with occasional drops.

Evolutionary Agile - Goal Directed Projects
Working in bite-sized chunks from emerging requirements with regular
deliveries

Evolutionary Agile takes this to the next level and is the natural home of goal
directed projects. Teams start work with only a vague notion of the
requirements. Over time the needs, practices and software evolve. As the
software is released to customers the needs are reassessed, new requirements
discovered, existing ones removed and new opportunities identified.
The teams has a goal, the team will determine what needs doing
(requirements) and do it (implementation) as part of the same project. The
team is staffed with a full skill set to do the complete work - analysts,
developers, testers and more. The team is judged and measured by progress

The Agile Spectrum 20-Apr-11

(c) allan kelly Page 5 of 10

towards the goal and value delivered rather than some percentage of
originally specified features completed.

Even goal directed Agile needs to start by establishing a few initial
requirements. Some teams call this period "sprint zero" in which a few seed
stories are captured from which product development (coding) can start as
soon as possible. From there on requirements analysis and discovery
proceed in parallel with creation. Those charged within finding the
requirements (Product Owners, Product Manager, Business Analysts or who-
ever) work just a little ahead of the developers.
Burn-down, even burn-up, charts have little meaning for goal directed work
because the amount of work to be done isn't know in advance. Work to-do
and work done are better tracked with a cumulative flow diagram showing
the progress in both discovering needs and meeting needs.
Governing goal directed work is superficially more difficult because it is not
measured against some nominal total. Instead work needs to be measured
against progress towards the goal.

These projects should be placed under a portfolio management regime that
regularly - at least quarterly - reviews the progress and value delivered so far
against the goal and the costs incurred. These figures should be produced
within the team itself, and the team should feel confident enough to suggest
its own end.

Taken together
Adding these points to the spectrum gives Figure 3. For a team migrating to
Agile the objective is to move from left to right. These three approaches
might reflect three level of capability but they may also reflect the nature of
Agile in a particular organization. One size does not fit all some teams are
better off with one style of Agile and some with another.

Many organizations, rightly or wrongly, considered any development process
that is iterative in nature to be "Agile". Therefore, in common parlance any
method on the right of this spectrum is called Agile, while anything on the
left is called Waterfall.

The Agile Spectrum 20-Apr-11

(c) allan kelly Page 6 of 10

Figure 3 - Divided spectrum

Waterfall approaches might split work into stages, work packages, or sub-
projects which can make work look a little like iterative development.
Although Waterfall development is associated with Big Bang releases many
such projects released several small-bangs. And after release "maintenance"
teams would continue to release updates.
Just as few teams actually embrace 100% evolutionary development, few
teams ever followed a pure Waterfall approach. Indeed, I would argue that
the Waterfall is so fundamentally flawed a pure Waterfall was always
impossible. (Before writing to take me to task please read the original
Waterfall paper (Royce, 1970).)

In my experience most development projects lie somewhere between these
two extremes, mostly clustered around the centre. Although I don't have any
data to support my argument I suspect that a standard-distribution bell-curve
could be laid over this diagram would show most teams following a
interactive process, with a few teams more incremental and a similar number
doing periodic releases on a Waterfall basis.

While there are no hard and fast rules about when a team is doing one style
of development and another there are some common traits visible by looking
at the practices the teams adopt. These are summarised in Table 1. While
these attributes are a useful way of describing and comparing different styles
and different teams they are not prescriptive.

Practices Waterfall Iterative Incremental Evolutionary
Stand-up
meetings No Yes Yes Yes

Planning

Start of project;
revisions as
needed

Regular 2-4
week iterations

Regular 2-4
week iterations

Regular 2-4
week iterations

Strict
Waterfall

Pure
Agile

Common AgileCommon Waterfall

Iterative Incremental

Evolutionary

Majority of development

Goal
DirectedSalami Agile

The Agile Spectrum 20-Apr-11

(c) allan kelly Page 7 of 10

Status
reporting

Regular,
against plan Regular Regular

Regular against
goal

Retrospectives
Sometimes at
end of work

Occasional -
more talked
about than done Regular Integral

Demo "Show
and tell"

Occasional
snapshot Occasional Regular

Only as
information
prior to release

Planning

Budget
Allocated at
start

Allocated at
start Mostly upfront

Arrives in
increments

Budget control
Monitored
against plan

Monitored
against plan

Value delivered
v. cost incurred
monitored

Technical
practices

Releases Once: at end

Once at the
end, or at
irregular
intervals

Regular during
project

Regular like
clockwork

Automated
Unit Testing No Maybe Yes Yes

Automated
Acceptance
tests No No Yes Yes
Test First
Development
(TDD) No Some Lots Everywhere

System
Integration
Tests

At end of
project During project During project

Ongoing during
project

User
Acceptance
Testing

Only end of
project

At end of
project During project

Ongoing during
project

Continuous
integration No Yes Yes Yes

Tracking
charts Gantt Burn-down Burn-up

Cumulative
flow

Design Big up front Mostly upfront Some up front Little upfront;

The Agile Spectrum 20-Apr-11

(c) allan kelly Page 8 of 10

activity plus refactoring mostly
emergent with
refactoring

Goal
Requirements
are goal

Requirements
are goal

Mix of upfront
requirements &
goal directed

Governs
project &
directs progress

Requirements

Officially
specified in
advance

Specified in
advance;
salami sliced to
developers

Specified in
advance;
salami sliced to
developers

Emerge during
project

User feedback Minimum Little

Plenty but little
scope to change
incorporate

Fundamental to
project success

Change
control

Traditional -
changes seen as
problems Traditional

Relaxed
traditional

None - changes
are requests

Table 1 - Comparison of characteristics

Examples
Interestingly, there is one area of software development were the goal-
directed evolutionary approach has long been the norm: maintenance.
Maintenance teams have the goal of keeping systems working, fixing bugs
and, often, small enhancements. Work emerges over time and the highest
priority work gets done and other work is left undone.

I remember working on a financial reporting tool called FIRE in 1997. There
was no roadmap or even plan for the product. The company had three, four,
then five and even six customers. As each sale was made new requirements
emerged: port from Solaris to Windows, from Sybase to SQL Server, to
Oracle, to AIX. And of course bugs.
These requests arrived with greater or less noise and urgency. I introduced
time-boxed iterations to the team: we released each month, and put a white
board on the wall to show what we were doing. Each iteration had a
collection of work, we delivered and then reviewed what had arrived in the
last month.
Evolutionary would be the best characterisation of FIRE. Requirements and
processes emerged as the work progressed. The overall goal was never
clearly stated and we only had elementary unit testing - but we had some!

Conversely, one of my clients in Cornwall is currently writing a completely
new version of their flagship product in an iterative way. The feature list is
almost entirely taken from the existing product. The team work in one-week
iterations, at the end of each iteration their proxy-customer reviews the work
and ticks it as done.
The work to do is grouped - physically - into monthly bundles - November,
December, January, February. The original aim of releasing in March but it

The Agile Spectrum 20-Apr-11

(c) allan kelly Page 9 of 10

now looks like it will be April. Nothing will be released until it is all
released.

Of course once the first release is done working will change. Probably the
team will take more of an incremental approach with monthly updates. They
still have plenty of features - new or held over - to continue implementing for
a few months. I expect that at some stage new requests and ideas will bring a
more evolutionary nature to the work.
This team will to revisit their overarching goal. As I write the goal is "Get a
version released with a subset of the current features." At some time in the
near future they will need to question the goal lest they drift into a "find
work, do work" mentality.

A change model
It is useful to consider this spectrum as a change model. Assume a starting
point somewhere on the left of the spectrum, a team doing some form of
common waterfall with all the imperfections that suggests. Being Agile, by
any definition means moving to the right.
As a first step the team can adopt a interactive approach and use Salami
Agile to manage requirements. In time, as they improve they advance to an
incremental approach. To go further the team need to move away from
salami and become goal directed. This requires more of the organization to
embrace the Agile ways of the team. Some teams may stall here for this
reason.
When a team has a proven track record at incremental delivery the
organization will come to trust the team they are opportunities arise for goal
directed, evolutionary work.

Summary
Although Waterfall and Agile are often characterised as straight alternatives
neither is particularly well defined. It is better to view them as representing
different areas on a continual spectrum from a strict phased approached to
no-phased approach.
On the Agile side of the spectrum there are different ways of approaching
work. Many teams work with pre-determined requirements in a salami
fashion. They deliver software in iteratively or incrementally. A few teams
work in a more goal-directed fashion were need, solution and process are
evolving.

Different techniques, tools, practices and processes are used at different parts
of the spectrum but there are no hard and fast rules as to what is used when.

About the author
Allan Kelly has held just about every job in the software world: system
admin, tester, developer, architect, product manager and development
manager.

The Agile Spectrum 20-Apr-11

(c) allan kelly Page 10 of 10

Based in London and he works for Software Strategy Ltd. He specialises in
helping software companies adopt and deepen Agile and Lean practices
through training, consulting and coaching. In addition to numerous journal
articles and conference presentation he is the author of “Changing Software
Development: Learning to become Agile”. Allan holds BSc and MBA
degrees and is PRINCE2 certified.

For more about Allan see http://www.allankelly.net or e-mail him at
allan@allankelly.net.

Details of consulting and training services available from Software Strategy
Ltd. can be found at http://www.softwarestrategy.co.uk.

Acknowledgements
Thanks to Paul Grenyer and Ed Sykes for reviewing an early draft of this
article; and the Overload editorial team for their usual attention to duty.

References
JONES, C. 2008. Applied Software Measurement, McGraw Hill.

ROYCE, W. W. 1970. Managing the development of large software systems: concepts
and techniques.

