The Philosophy of extensible software 16-Jul-02

The Philosophy of extensible software

In Overload 49 | wrote about extensible software, it's atheme I’'m going to continue with for a couple
more articles. If | were to attempt to summarise my philosophy of software development in one
sentence it would probably be: Software must stay soft, malleable. The discipline of extensibility isthe
tool which best helps us achieve this. So, although I'm declaring an intention to stick with software
extendibility for alittle while, I'm actually intending to look at how we can keep our software flexible

and open to change.

How does software resist change?

In order to understand how we can keep our software malleable it isworth considering how software
looses this quality. After all, when you start a new project, the world is your oyster, you can take the
project in any direction.

Ripple effect

A changein one moduleisjust that: a changein one module of the system. The principles of
abstraction and data hiding tell us that we should be able to make changes to hidden code which have
no sde-effects elsewhere. Often though we find thereis aripple effect.
If we drop a small stoneinto a pond we see ripples spread out across the pond. The water surfaceis
perfect for propagating the effect. Software s, if anything, better than water at propagating the effect.
Changing the interface of a module means we must make corresponding changes to the use of the
interface elsawhere.
Speaking of the interface means more than just the class definition in some header file. Thisisthe
most clearly stated part of theinterface but it islike an iceberg, there ismuch we can’'t see. The
compiler can check the function signatures but can it check the comments?
Consider some code:

// SerialPort._hpp

// Read up to bufferSize characters from serial port
// store in buffer and return ptr to buffer

char* ReadSerialPort(char *buffer, int bufferSize);

// SerialPort.cpp

// Read at least bufferSize chars from serial port
// store in buffer and return ptr to end of buffer
char* ReadSerialPort(char *buffer, int bufferSize)

{
assert(buffer 1= 0)

(c) Allan Kely Page 1 of 7

The Philosophy of extensible software 16-Jul-02

assert(bufferSize > 16)

The interface the compiler can check only forms part of the interface. The comments form ancther
vital part of theinterface and in this case they differ. Which set iscorrect? The devel oper must break
the abstraction and ook under the hood to see what is happening.
Thisistypicaly how aripple starts, we' ve found something which isn’'t quiteright, not so wrong it
breaks the program but not good either.
Both sets of commentsfail to tell us that the buffer supplied must be pre-allocated and at least 16
characterslong. Sure, it may seem logical to allocate the buffer before calling the function but the C
function time never worried too much about this.
At onelevd thisisimplementation detail, at another leve it isinterface, we can fix the comments, we
can even change the function signature to reduce the problems with this function:

// SerialPort._hpp

// Read up to bufferSize characters from the buffer
// store in buffer and return number of bytes read
// bufferSize must be at least 16 bytes

// return value < bufferSize

int ReadSerialPort(char *buffer, int bufferSize);

Now we have created aripple effect, not only this module but several otherswill need recompiling.
Wherever this function is used we must now change the code, our change has dipped out of our chunk.
Whileit would be a pretty relaxed compiler that still allowed you to write:

char* buf = ReadSerialPort(buffer, 32);

A developer in search of aquick fix may be tempted to write:
char* buf = (char*) ReadSerialPort(buffer, 32);

Whilestatic_cast will refusethis reinterpret_cast hasno such quaims, and as
demonstrated the old-style casts are till in the language and available.
The general rule of ripple effect isthat he who made the ripple has to stop it, you find yourself running
around all over the code, fixing ripples where they appear. Thisisall but impossibleif you don’t have
areliable build process - if you can’t integrate your code easily then you can't tackle theseissues. A
good source code control system is essential in case things go wrong, or time runs out, and you need to
back out your changes.
Nor do we have perfect foresight, we may grep the code for every instance of ReadSerial Port before we
make our change, but we can’t expect to find every case. Just searching the code may be a bigger job
than actually performing the change. A logical directory structureisimportant here, if our codeis
scattered over several dozen disparate directories on different hard discs then what chance have we got
of finding it?
Suppose we how find:

// pointer to general read function

(c) Allan Kely Page 2 of 7

The Philosophy of extensible software 16-Jul-02

typedef char* (*ReadPortFunc)(char*, int);

// read function

char* ReadData(ReadPortFunc reader)

{
int bufferSize = 256;
char* buffer = new char[bufferSize];
memset(buffer, 0, bufferSize);
return reader(buffer, bufferSize);

}

Instead of diminishing, our ripple has grown. We can fix this, but suppose we find:
char* ReadUsbPort(char *buffer, int bufferSize);

char* ReadKeyboardPort(char *buffer, int bufferSize);

Do wefix these functionstoo? Or fudgeit? Therippleisnot just a smple compiletime fix now, it has
uncovered a bigger problem, and while we may have the code in a compilable state, we (should) fedl a
certain moral commitment to fixing this problem. The ripple has grown.

Rippleslikethis, and fear of ripples, is one of the main ways code resists change.

Friction of change

Theripple effect demonstrates the friction that can occur when changes are made. If these changes are
within the same modul e then the friction is less because the changes are not visible e sewhere. The
bigger the change, the more modulesinvolved, the greater the friction. When a system is changing
rapidly, dividing it up can be counter productive because there is a constant friction as changesripple
out of one module and into others.

But friction between modules comesin other formstoo. Wherethere are several developerson a
project there is always the opportunity for conflicting changes to happen. While exclusive locking
through source code control can help, it is not a complete answer. At best it forces one devel oper to
wait while another completes a change, the second devel oper then has the task of integrating the
change with their requirements. Non-exclusive locking systems can hide this problem until the second
devel oper checks their code but the same problem arises.

Either way, friction is generated because two devel opers must co-ordinate their actions. If the
developers are located in different teams, or even different countries, the friction is much greater till.
When a change introduces a new dependency into a module, say a new file must be#include’d the
initial friction may be small, adightly increased build time. But when this changes the overall
dependencies of the module, and in particular if thisintroduces a circular dependency the potential
friction is greater till.

Observant readers may have noted the potential contradiction istalking of “ripple effect” and “friction”

— after al ripples occur in frictionless water. Ripples are waves, and waves can only occur when two

(©) Allan Kely Page 3 of 7

The Philosophy of extensible software 16-Jul-02

modul es share a common boundary. Such a boundary propagates the wave — think of the way an
earthquake wave carries.

Sound waves cannot travel in avacuum, likewise software ripples cannot pass from one module to
another if they are wdl spaced. Since our modules don’'t exist in isolation we can’t placethemin a
vacuum, what we can do istry to minimise thefriction at the boundary and thus minimise wave

propagation by allowing each module to change without creating a wave beyond its own boundaries.

Process roadblocks

Software takes on many of the attributes of the organisation and process that createsit.

Thisideais summarised as Conway’s law — athough the exact wording of the law differs. Jim
Coplien’s process pattern of the same name has the solution “ Make sure the organisation is compatible
with the product architecture.”

Where an organisation is conservative and resists change their software will too. This may manifest
itself in many ways: a business which resists change may create code which resists change, or, it may
mean managers refuse to allocate time for modifications.

This can be afrustrating position for a software developer, they may know of a bug, they may know
how to fix it but they may be refused permission to deal with it. Or, tofix it may requireraising a bug
report, having the work prioritised, authorised, scheduled, changed, tested, signed-off and rel eased.
Sure we need a process, but we must not put the process before the product. In process-centric
organisations we find mangers who know the price of everything but the cost of nothing.

Some organi sations refuse to recognise refactoring as an exercise. “If it processes data, it can't be
broken, can it?" “Reworking something means you made a mistake, right?’

Deve opers have refactored code since the beginnings of time, but only with the publication of Martin
Fowler’s book (2000) hasit been arespectable activity. Unfortunately, it is still not an acceptable
activity in many organisations. Failureto refactor code makesit more rigid, aswe put change upon
change it becomes inflexible and set in itsway. Unfortunately it still processes data.

Thisislike not servicing a car, it continues working, there is no apparent problem, but the further you
get beyond an oil change the more damage is being doneto theinternals. Likeacar, over time

software changes and without active attempts to improve the quality it invariably deteriorates.

Development is a learning process

As we devel op software we learn, we learn more about the problem domain that the software addresses
and we learn more about our solution domain — the tools we have used to addressit. Naturally, this
leads to new insightsinto both.

We also have time to dwell on problems and issues. We may take a week to draw up a class hierarchy,
but we have the rest of our livesto rethink it and consider how we could of doneit better. Thiscan
make life hard for usif we come to believe we made a mistake, or no longer agree with our original
designs — or just see a better way. Maybe what once seemed a brilliant design now seems top heavy, or
inefficient, or smplistic. Don't be too hard on yourself, admit you made mistakes if necessary. If we

don’t do thiswe will not move forward, it is now us who are resisting change.

(c) Allan Kely Page 4 of 7

The Philosophy of extensible software 16-Jul-02

How does extensibility work?

Extensibility works because it forces an approach to problems based on:
? Anup front design which allows for addition
Thisis not to make a case for big up front design - quite the oppositein fact. Big up front design
assumes you can design the entire system up front. An extensible design accepts you can’t design

everything in advance, instead it provides a light framework which can allow for changes.

In some waysthisis similar to the STL separation of container and algorithm. The STL doesn’t
claim to know all the algorithms that may be used with a container, but instead provides a
mechanism (iterators) which alow algorithms to be added later.

? Additionsto be madein small, incremental steps
It is possible to produce an extensible system where the increments are big, take our command
pattern example. The commands could be small, “Put the kettle on”, rather than big: “ Take over the
world.” If we make our commands too big we |oose the element of extensibility, the original

problem isrelocated inside a single command, which is effectively the entire system.

? Work eementsto be separated into comprehensible units
Computers may run programs and source code may be compiled by atool, but it is humans who
have to read and understand the system. Thereisahuman factor to all of this, just because we can
write an immensely complex piece of code doesn’t mean we should. Anyone who hastried to
maintain by hand code that was originally produced by a code generator will have seen this problem
— indeed Perl scripts exhibit the same problem at times. So, keep each unit at a human level.

How does extensibility help?

To achieve these objectives we need to emphasis traditional software development issues: high
cohesion, low coupling, interface-implementation separatation, minimise dependencies, and develop
build procedures to perform constant integration. Thisimposes a discipline on our development.
Extensible design fits well with the principles advocated by the Agile methodol ogies and iterative
development. It allows functionality to be implemented in small steps as required, thus it dove-tails
with the minimal implementation, iterative development and frequent re-prioritisation often advocated
by Agile development.

In an extensible design we cannot afford for one chunk to be too closaly coupled with other chunks.
The very essence of the system is embracing change, it is accepted that additions will be continual, if
one chunk of the system resists such change it will make the whole design unworkable. Thus, we have
placed the friction of change centre stage. Normally we would rather not think about friction, itisa
problem we want to go away. By eevating the issue we are directly addressing it, the whole system is
designed around theidea of change through addition.

If you are the kind of person who likes new, green-field, system development this may sound pretty
horrid. Basically, I'm suggesting you lay minimal foundations of specification, design and framework
coding and make a quick dash for the maintenance phase where you actually fit the functionality.

(©) Allan Kely Page 5 of 7

The Philosophy of extensible software 16-Jul-02

True, | hold my hands up, | agree. However, in my defence, | claim I’m actually moving as much new
development as possible into the maintenance phase of the project. Extensible software allows you to
write new code well after your first release. Indeed, if you find a chunk of functionality is difficult to
understand, buggy, or just not extensible throw it out and start again.

What isimportant isto get an up front design which can allow for continued development. Thisislike
a shipyard building the hull and inner structure of a ship but leaving the fitting out and completion of
the super-structure until after launching. Once the ship has enough structure to float it no longer need
to monopolise a dipway - indeed it may even befitted out by a different yard. Over the course of its
lifeit will undergo continual maintenance even asit pliesthe high seaswith the occasional refit, which

may completely changeits use.

Extensibility is not “reuse”

Extensibility a no magic bullet, it is just another technique in our toolbox for tackling software
development. Nor isit acodeword for “reuse’. True, many of the properties emphasised by
extensibility are the same ones preached for reusable code: low coupling, high cohesion, modularity,
but these properties are advocated by most software engineering themes. Indeed, who would argue for
tightly coupled systems?

It may be that, having an extensible system, with malleable code allows your technology to be
transferred to another project — many of the properties required of an extensible system make transfer
easier. One could easily imagine aword processor system which offered a standard system and a
beginner version with fewer options, plus a professional version with more— the same way
Volkswagen sdl the Galf in tandem with the Skoda Fabia (low end), Audi A3 (high end) and
speciaisationslikethe Beetleand TT.

But, such platform transfer is deriving from the minimalist camp - “lessismore” isthe starting point.
Extensible software development is no license to add bells and whistles to your code in the hope that
someone may use them. Quite the opposite, extendabl e software should be free of bells and whistles, it
should be minimal while allowing itself to be extended.

Striving for extensibility should impaose a discipline on development leading to fewer, cleaner,
dependencies, well defined interfaces and abstractions with corresponding reduction in coupling and
higher cohesion.

I've been here before....

| tried at the top of this essay to summarise my software development philosophy. Looking back at
my contributionsto Overload in the last few years | can see this as a common theme. To keep software
malleable we must be aware of the dependency structure of the program, this| addressed in Overload
41 when | wrote about layering in software; dependencies start with include files (Overload 39 and 40).
| believe inline functions reduce abstraction, increase dependencies and generally complicate matters —
hence my piecein Overload 42. (If anyone ever produces a subset of C++ |'d lobby for inline
functionsto be first against thewall.). More recently my pieces have looked at how we view software
as models (Overload 46) or abstractions (Overload 47).

(©) Allan Kely Page 6 of 7

The Philosophy of extensible software 16-Jul-02

Extensibility of software happensin all sorts of ways, at different levelswithin the system. Itis

important to have a view of your software as a living, growing, entity.

And finally

Extensibility is atechnique for reasoning about our software. It isnot new but it has been neglected as
atechniquein itsown right. In part thisis because it is often an attribute of other techniques — as noted
in my previous essay it isimplicit in many design patterns.

The properties that make up an extensible system are not confined to your source code — there are build
systems, source code control, bug tracking, documentation, team mangement, and more. (I tend to call
thisthelogigticstail and I'll expand on that idea next time.)

Extensible source code must be supported with extensible build systems, directory trees, database
access mechanisms, and so on. These systems shine when we are able to align design, source code,
management and devel opers to form a process which becomes areinforcing strategy.

Bibliography

Conway's Law comesin severa different forms, Ward Cunningham’ s Wiki page gives several
different forms at http://c2.com/cgi/wiki?ConwaysL aw

Jm Coplien version of Conway’ s law as a process pattern is at http://www.bell-
|abs.com/user/cope/Patterng/Process/section15.html

Fowler, M., 2000; Refactoring — Improving the design of existing code, Addison Wed ey, 2000

(c) Allan Kely Page 7 of 7

