
Extendable Software: An Example system 29-Apr-02

(c) Allan Kelly Page 1 of 5

Extendable Software: An Example system

ECE – extendable contract evaluator – is a very simple model of a contract evaluator for the electricity

market. To keep things simple the year is divided into 365 days each of 24 hours1. As it stands I am

guilty of over engineering the example, not only was I attempting to apply the ideas of layering (Kelly,

2001) and cohesive header (Henney, 2000) in aligning namespaces with directories. I hope to be able

to enhance this program for future examples.

The first features to note are:

? main.cpp is the “top” of the program. As you may guess, it contains the main function where

execution starts. When run the program loops over all available contracts, evaluates them and

displays the results.

? EvaluatorState class provides the “state” of the system – currently just the price and demand

in any hour of the year.

? AbstractContract class is the basic work unit. It represents an interface which each contract

must conform to in order to be evaluated by the main loop.

There is nothing really radical in this design. The most important thing is the ContractList type

which is used to store a list of the available contracts. Where these contracts come from is irrelevant to

the main processing loop, it just knows it has some contracts to evaluate.

Now if we look more closely at a contract, FixedPriceContract , which implements the

AbstractContract interface. This class is compiled in with the main program, in effect hard

coded. What is important here is how we could add another hard coded contract. This would entail

three steps:

? Deriving from AbstractContract write the code for a new contract, e.g. NewContract ,

inside .h and .cpp files, e.g. NewContract.h and NewContract.cpp and add them to the

makefile

? Include NewContract.h in main.cpp and in the function AddHardCodedContracts add

NewContract to the contract list:

contracts.push_back(new NewContract());

? Recompile the system

We have now added a new contract to the system with the addition of one line to the existing system.

Although we have added a line of code, no existing code was removed, and no lines where changed.

Thus the chances of introduced new faults into the existing code have be minimised. Of course,

NewContract could contain some major flaw itself which would crash the system.

This then is an example of how we can extend code at compile time. Next we want to consider how we

may extend the system at run time.

1 In reality we would need to allow for leap years of 366 days, and days when clocks go forward (23

hours in the day) or back (25 hours in the day), and the last I knew electricity contracts where based on

half hours.

Extendable Software: An Example system 29-Apr-02

(c) Allan Kelly Page 2 of 5

The file DynamicContracts.cpp contains the code for this. The function

AddRuntimeContracts assumes that any command line parameters passed to the program specify

the names of DLLs to be loaded at run time.

For each name specified the function tries to load a DLL. (The search path for these DLLs is system

dependent but normally starts with the current directory so I have placed by DLLs there.) If a DLL is

found the system attempts “Poor mans COM” and looks for a function called ContractFactory

inside the DLL. Now, if this is found the function is called and the result assumed to be a pointer to a

class derived from AbstractContract .

It is worth noting that we are making an assumption here. The DLL could return something completely

different. Indeed, the ContractFactory could be a completely different function to the one we

assume it to be, it could for example require one or more parameters to be passed.

At this point, assuming we have found the DLL, successfully called the ContractFactory function

and retrieved a pointer to a class we again add it to the contract list. The contract will be evaluated in

exactly the same way as the hard coded contract. We have demonstrated run time extensibility of the

system.

Before moving on there are some points that require more examination here.

I have provided the MinPriceContract which is packaged in a DLL to demonstrate this system.

However, the MinPriceContract is a separate compilation. Although in my Visual C++

development environment I have included it in the same workspace as the other parts of the system it

does not need to be there. As long as it can see the necessary libraries it could be built separately. This

is both an advantage and a disadvantage because it opens the door to incompatibilities between it and

the rest of the system.

Next we must consider the Windows linking model. Using the Microsoft utility dumpbin against the

MinPriceContract DLL (e.g. dumpbin /exportrs MinPriceContact.dll) we can see

the mangled names of functions exported from the DLL. These functions are only exported because

__declspec(dllexport) was specified for the ContractFactory function and the class

declaration.

Unfortunately, declspec does not exist, and is not needed, on other platforms such as Solaris and

Linux. This makes the source code has become platform specific.

Observant reads may have noticed that there is no header file for MinPriceContract . The class

declaration is itself inside the MinPriceContract.cpp file. Outside the boundaries of the DLL an

object of type MinPriceContract is simply an implementation of AbstractContract .

Finally on MinPriceContract it is worth noting that there is a “diamond problem” (Meyers,

1997). Since AbstractContract only has abstract methods the problem is irrelevant however if

we look at the destructor we can start to see the problem.

Although the destructor is a pure virtual it is allowed to have a body. Further, it is actually required to

have one by the C++ standard, although this can seem counter-intuitive, not least to compiler writers

and you may find slight differences between compilers on this point. For example, gcc 2.95.3 will not

allow the body to be specified in the class declaration, it must be specified separately.

Extendable Software: An Example system 29-Apr-02

(c) Allan Kelly Page 3 of 5

When ExtensibleEvaluator is compiled one copy of the destructor is generated, and then, when

the MinPriceContract DLL is generated another copy is generated. This is right because the

compiler has no way of knowing that MinPriceContract DLL will be used with

ExtensibleEvaluator .

Now this isn’t visible to users. Nor is it a problem in this case because the destructor is trivial, and is

inlined anyway so two copies would probably be generated even if the files where all compiled and

linked together.

(If you want to see the problem for yourself give the destructor the body:

virtual ~AbstractContract() = 0 {

int x = 1234;

int y = x;

};

And compile DLL. Next change x = 0 and compile the main program. Now step through the

destructor calls with a debugger and watch the values of x and y. You will see, despite what your

source code shows on screen that x takes the value 1234 when MinPriceContract is destroyed

and 0 when FixPriceContract is destructed.

This is also a good example of how code inside a DLL can get out of step with your source code or the

same code inside another executable.)

Of course, as has already been pointed out, this is not a big problem. However, if we were to add a

more substantive method to AbstractContract , or a static member, we may start problems – at

the very least we will see code bloat.

We can conclude that run time extensibility is practical provided we take certain precautions. Link

time extension can be even more problematic.

To perform any kind of link time extension you need both some code to link in, say,

LinkTimeContract , which has been compiled to an object file - .obj on Windows and .o on Unix.

You need to include some functionality in this file, which will be executed autonomously of the normal

main, which starts the program. Your compiler or linker may provide some means of doing this

however this will be specific to the compiler or linker.

Alternatively, you can do it with language tricks. A sketch of the solution looks like this:

? What we want to do is execute some code, which is not part of the main program. We need to

force some code into the program so that it is executed without modification to main or any of

process paths from there on.

? Inside source code of the LinkTimeContract we provide for a non-local instance of a class,

since we want it limited to this file we will make it static, something like:

static StartupObject linkTimeTrick

We write StartupObject in such a way that all our work is done in the constructor. If we now

link this into our main program with the linker we can expect an instance of StartupObject to

be created at run time before main execute. Note that we do not know what other objects are being

constructed since C++ makes not guarantees about initialisation order.

Extendable Software: An Example system 29-Apr-02

(c) Allan Kelly Page 4 of 5

? Inside the constructor we insert a factory function for LinkTimeContract into some kind of

list of such objects, lets call it LinkTimeFactoryList .

? For this list we cannot use a regular C++ array because we don’t know how many factories we are

going to add to the list or, indeed, in which order or positions. We must therefore use a C++

container type such as list.

? We must now ensure that list<LinkTimeFactory> must be constructed before any of our

StartupObject’s. Tricky. But as Scott Meyers (1997) described in Effective C++ (item 47) not

impossible. We can write:

list<LinkTimeFactory>& LinkFactoryList() {

static list<LinkTimeFactory> factoryList;

return factoryList;

}

....

StartupObject::StartupObject() {

LinkFactoryList().push_back(someFactory);

}

There are several problems here. First, in reading Meyers we know exactly why we shouldn’t use the

non-local static.

Second, Meyer’s own recommendation has threading problems, if two threads attempt to run the

function at the same time we could end up with two objects. Of course, as we are doing this at start-up

we should expect only one thread to be running, but can we be sure the compiler implementers haven’t

come up with some new trick?

Finally, we may not have freed ourselves from the linker and compiler platform problems. A zealous

linker or compiler could potentially notice that our linkTimeTrick object wasn’t being used

anywhere and remove it.

Even assuming the code is still present we have no guarantee that it is executed before main, and

therefore before we attempt to access the factory list. Section 3.6.2 of the C++ standard (ISO 1998)

allows the compiler to avoid initialising our StartupObject until it is needed, which it never

actually is.

This leads us to compiler options. Microsoft Visual C++ supports pragma init_seg for this

purpose – see Bugslayer, 1997 – which is of course non-portable.

In short, before you attempt link time extension of your code you should look at the problems and

issues involved. Then ask yourself if is still better to do it this way. Confronted with these issues you

may well decide that compile time extension doesn’t look so bad. It is certainly more portable and

more reliable.

Extendable Software: An Example system 29-Apr-02

(c) Allan Kelly Page 5 of 5

References

BUGSLAYER, 1997, Introducing the Bugslayer: Annihilating Bugs in an Application Near You,

Microsoft System Journal, October 1997.

HENNEY, K., 2000, C++ Patterns Source Sohesion and Decoupling, Overload 39, September 2000.

ISO, 1997. ISO/IEC 14882: 1997. Programming Languages – C++.

KELLY, A., Source Code and Layers, Overload 41, February 2001.

MEYERS, S., 1997, Effective C++. 2nd edition. Reading: Addison-Wesley.

