
Sidebox: Microsoft libraries (Sidebox.rtf) 5-Dec-01

(c) Allan Kelly Page 1 of 2

Sidebox: Microsoft libraries

Modules are most obvious at link time: the application in example one must be linked with the 3 user

libraries and then system libraries. This is where a particularly ugly linking problem can occur in Visual

C++.

LINK : warning LNK4098: defaultlib "LIBCD" conflicts with use of other libs;

use /NODEFAULTLIB:library

What this error really means is something like: one part of the system was compiled to use a single

threaded standard (libc) library with debug information (libcd) which is statically linked, while another part

of the system was compiled to use a multi-threaded standard library without debug information which

resides in a DLL and uses dynamic linking, or some something similar.

In fact VC++ comes with no fewer than six versions of the standard library: debug and non-debug, single-

threaded and multi-threaded, .lib resident and .dll resident – there is no single threaded DLL version of the

libraries.

Once this error appears people normally check their project settings run-time library choice. However, this

is only part of the story and can actually be the start of many frustrating hours. Microsoft allow developers

to imbed directives (#pragma comment(lib,....)) in their own libraries which tell the linker which standard

library this library expects to be linked with. These directives are all equal in the linkers eyes, so if your

application is built for debug mutli-thread DLL and one of the libraries is set for single threaded debug you

will have a conflict. Even though the project settings clearly say one thing the linker will try to also link an

alternative.

The best way to fix this problem is to trawl through all your libraries and ensure they have the correct link

settings. This can be very time consuming, particular as each one may need re-building. So, you have

three options

? Ignore the warning, after all it is only a warning. However, your program now contains multiple

instances of the same functions. If you are lucky you will quickly see an really obscure memory access

violation, chances are the memory was allocated from one pool (say the libc, single threaded non-debug

library) and freed to another (say, MSVCRTD, the multi-thread dynamic debug library). If you are

unlucky things will work for you and a customer will encounter this problem.

? Use the linker option, /NODEFAULT:lib as suggested above, or even /FORCE. This is not a complete

solution, even if you can get your program to link this way you are ignoring a warning sign: the code

has been compiled for different environments, some of your code may be compiled for a single threaded

model while other code is multi-threaded.

? Trawl through your libraries and ensure that everyone is set to the same settings.

However, even this is not guaranteed to work! There are two common problems here:

? You have a third party library which is linked differently to your application.

Sidebox: Microsoft libraries (Sidebox.rtf) 5-Dec-01

(c) Allan Kelly Page 2 of 2

? You have other directives embedded in your code: normally this is the MFC. If any modules in your

system link against MFC all your modules must nominally link against the same version of MFC. In

reality this is not much of a bind, although your code may be set to link against MFC if the libraries will

only be pulled in if something from them is used.

This can all be very boring and frustrating to track through your code. However, it’s not that bad, there are

a few tools you can use to look inside libraries.

? dumpbin supplied with VC++ has several options which can be helpful but /DIRECTIVES it probably

the most useful.

? depends is a tool supplied with the NT resource kit can drill down into the DLL loaded by a program.

(Actually, there are two versions of depends, a command line tool and a much nicer GUI one.)

? pview (supplied with both VC++ and the resouce kit can show which DLLs are loaded. However, it is

quite normal to see MSVCRT and MSVCRTD (debug version) loaded at the same time as much

Microsoft code itself uses MSVCRT.

In addition, if you follow these rules you should be OK:

? Decide which library you want to link against and stick with it for everything: normally this means

dynamic multi-threaded debug and release. If you are using MFC you don’t really have a choice.

? Ensure any third party libraries have this dependency (or better still none at all.)

? Never use /NODEFAULT:lib or /FORCE : once this problem enters your quickly ripples through

everything, you can’t allow exceptions.

? Never select “ignore default libraries” : it doesn’t work very well anyway.

? Never use #pragma comment(lib,....) yourself. It introduces a hidden dependency.

Finally, the best solution as ever is to understand what is happening. Understand what libraries Microsoft

supplies and is forcing on you.

