
Ruminations on Knowledge in Software Development 1-May-03

(c) Allan Kelly Page 1 of 5

Ruminations on Knowledge in Software Development
In computing we are accustomed to shunting bits and bytes about. We call this data, we may even
accept this represents information, but is it knowledge? In fact, are there any real and important
differences between data, information and knowledge? And are these differences of any importance to
us when we develop software? (And, with all these questions, am I in danger of turning into a
character from a well know HBO series set in New York?)

This article continues the theme of learning from my previous Overload piece, “Software Engineering
and Organisational Learning.” In part you may like to consider this an simultaneous review of several
books which promote the same ideas.

The difference

In everyday language data, information and knowledge tend to be interchangeable terms. Certainly,
most dictionaries I’ve looked at seem to define each term in terms of others. However, if there is no
difference between these terms what is the point of having them?

For their book, Working Knowledge, Davenport and Prusak (1998) noted that there are many words and
definitions that are applied to the nebulous ideas of data, information and knowledge. But since we
have enough trouble defining just three terms we had best not ponder on too many. Using their
working definitions we get:

? Data claims to be some objective facts about events.

? Information is a message intended to change the receivers perception of something, it is the
receiver rather than the sender who decides what the message means.

? Knowledge is a fluid concept, incorporating experience, values, context that exists inside an
individuals mind or in the processes and norms of an organisation.

One of the leading writers on the subject of knowledge is Ikujiro Nonaka, he attributes (1995) three
attributes to knowledge:

? Knowledge is about beliefs, commitment, and is a function of perspective and intention

? Knowledge is about action

? Knowledge, and information, are about meaning and is context specific.

Later, he extended these ideas to place knowledge within a concept called “ba” (1998). This is a
Japanese term us uses to describe the space in which knowledge exists, take away “ba” from
knowledge and what you are left with is mere information.

For example, Meyers Effective C++ is nothing more than a list of 50 items in strange bizarre language
- at least when Nick Hornby publishes a list there are a few laughs. But add experience of C++, the
values of the C++ community and the fact that readers are usually practising C++ programmers and
suddenly the contents of Effective C++ take on a different meaning.

Another example of “Ba” occurred during the development of Concorde. The Soviet Union decided it
had to have a supersonic passenger plane to rival the Anglo-French Concorde and the proposed Boeing
2707. Lacking the time and expertise the Soviets stole the blue prints of the plane and set about
building their own Koncordski, the Tupulov 144. When revealed the plane looked like Concorde, and
it even flew but it didn’t perform as expected.

Although they had the plans the Soviet engineers lacked context and culture of the designs.
Measurement systems where different, ways of working where different, and notations where different.
Thus, they weren’t about to build an exact replica of the Anglo-French plane.

Similar things happen to software project when a new team takes over an old project. The project code
may come with documentation and UML charts but it is still difficult to understand. The new team
lack the “ba” of the old team. This may explain why developers tasked with maintenance often feel the
need to re-write existing code.

Ruminations on Knowledge in Software Development 1-May-03

(c) Allan Kelly Page 2 of 5

Where is knowledge in software development?

The whole software development process is an attempt to codify knowledge. We start with some
vague idea of what a system should do and, through successive processes of specification, design,
implementation and testing, try to turn that knowledge into a working, useful, model.

Our problem is that knowledge is difficult to codify. As software developers our skills and knowledge
reside in our own domain, our own field of “ba”. We take a problem domain, with its own “ba” field
and attempt to produce a product which will exist in both domains, satisfying the requirements of the
problem domain while meeting the engineering requirements of our own solution domain.

Software needs to exist simultaneously in these two environments. Commercially it is the part seen by
customers that tends to get priority, even though this represents the tip of the iceberg (Figure 1). As
engineers we see the bigger, more complex problem underneath the waves.

Developers focus on the unseen
elements, but need to consider how the
customers see the software

Customers only see the tip of
the software, needs to fit
with their way of working

Figure 1 - Software is like an iceberg

Codification

As if this weren’t enough, much knowledge is actually tacit. That is, it is uncodified, it is not written
down anywhere. We may not realise we have this knowledge until we attempt to write it down or do
things differently. Usually it is just “the way we do it around here.”

When we deliver a program it enters into the users domain. It becomes has to live as part of their “ba”
so we must respect what users know and expect. If we embed values and judgements into our software
which are different to the ones in common use our customers will find the system counter-intuitive and
difficult to use. If, on the other hand, we tailor our system to their norms they will find the system
easier use.

Of course, often the whole point of introducing software is to disrupt current practices so they can be
changed. However, we should be sure we know which practices we are attempting to change and
which we want to keep. There is no point in introducing software which forces doctors to measure
temperatures in Kelvin if we are trying to change their prescribing practices.

Specification

It is when we come to write the specification that we start to grasp the difficulties that are presented by
both “ba” and tacit knowledge. Specifications have a tendency to grow like Topsy, they never seem to
be complete. If we attempt to write a complete specification we must not only codify the system
requirements but also the context, the “ba” they exist in. To be fully complete the specification for the
prescribing system would need to explain what temperature is, how it is measured and what the units
are.

Specifications are themselves abstractions, and in making the abstractions we have to leave out detail.
But the attempt to leave out detail leads to incompleteness because we rely on context to provide it. It
is always possible to add more explanation to a specification. Thus we end up with thousand page
specifications.

Ruminations on Knowledge in Software Development 1-May-03

(c) Allan Kelly Page 3 of 5

Secondly, our specifications still haven’t tackled tacit knowledge. As we write the specification we
will uncover more and more undocumented rules of thumb, methods of working, common practices
and so on. This continues as the system moves to implementation and we see how the different bits
interact. Testing, almost invariably, throws up undocumented assumptions, missed function points and
incompatible implementation.

Hand-over

Anyone who has ever worked on a serious software system will have been involved in project hand-
overs where on developers attempts to dump the contents of their brain, their knowledge, to a new team
member. This can be scary if your arriving on the team and suddenly trying to absorb a million and
one facts about a system, and if your the one trying to pass on the information - particularly if your
leaving the company.

Documentation is of limited help. Like many developers I’ve experienced the mountain of
documentation which lies in wait when you join a new project. Because it has been written down
managers expect that simply reading it will make you as knowledgeable as the writer.

Again we see tacit knowledge and “ba” at work. The documentation can’t possibly contain every thing
the last developer knew about the system. Even if they divided their time equally between
documentation and coding there are assumptions that will never make it to paper.

And reading the documentation when you first join a project means your reading it in the abstract.
Until you have been emerged in the project, spoken to other developers - tried to understand the
problem and the solution - large parts of documentation are meaningless.

Knowledge creation

In producing a solution to a problem we need to create new knowledge about the process and about the
solution. If we understand the knowledge creation process it should help us work with the process
rather than against it.

In writing about knowledge, Nonaka, proposes a four stage model (Figure 2) that turns tacit knowledge
into explicit knowledge, combines it with other explicit knowledge and turns it back into tacit.

From explicit to tacit, e.g.
learning the workings of the
system, knowing where to
put breakpoints

From explicit to explicit, e.g.
writing program code to meet
specification

From tacit to tacit, e.g.
apprenticeship, passing on
knowledge, learning the
unwritten development
process

Externalisation

Combination
Internalisation

Socialisation

From tacit to explicit, e.g.
documenting system design,
writing system specification

Tacit: New
internal

knowledge

Explicit: Codified
knowledge

Explicit: New
external

knowledge

Tacit: Internal
understanding

Combine with other explicit knowledge

Figure 2 - Nonaka's four modes of knowledge conversion (adapted from Nonaka, 1995, p.62)

Ruminations on Knowledge in Software Development 1-May-03

(c) Allan Kelly Page 4 of 5

With each conversion knowledge is extended. This may mean it is combined with some other
knowledge to create new knowledge, or it may mean that more people understand the knowledge, it
may also mean that individuals have a better understanding of the knowledge.

Just do it

Another of Nonaka’s point was that knowledge implies action. We need to act on information in order
for it to truly be considered as knowledge. After all, how many times have you written a piece of code
which you know violates some best practice, but, for what ever reasons, time, laziness, expediency, you
write it some other way? You have the information to write it better but you choose not to.

Software developers are not alone in this. Newspapers regularly publish stories about reports written
for companies or Governments that are not acted on, how a study recommended X in 1998, and in 2001
Y happened because X hadn’t been done.

In fact, there is a whole book on subject called - the Knowing Doing Gap by Pfeffer and Sutton (2000).
They suggest that individuals, teams, and companies often know what the best thing to do it, but they
fail to act on what they know for a variety of reasons. As well as discussing these problems Pfeffer and
Sutton examine a number of companies who have succeeded in overcoming these problems and have
enjoyed considerable business success.

One of the companies described in Knowing Doing Gap is SAS Institute of North Carolina. SAS is the
worlds biggest privately owned software company - proof, if it was needed, that these concepts are
applicable to software development.

Perhaps surprisingly Pfeffer and Sutton suggest that successful companies don’t have any special secret
ingredient, or magic bullet, they don’t necessarily do anything other companies don’t know about.
What these companies do do, is to actually act on what they know. Simple really.

What do we do now?

Many problems in software development are of our own making. We don’t do what we know to be
right. We use myths to stop us acting on our knowledge, we get involved in infighting and, in many
cases, we collude to support a system that we know could be better.

For example, the myth that the 1,000 page specification describes everything that we need to know.
No serious software developer really believes this myth but people still contract to develop software on
the basis that the specification contains everything we need to know. There is no silver bullet here, the
solution is to stop propagating the myth and instead institute working practices that allow for learning
and knowledge creation as we go.

Another myth particularly popular among managers is that of the plug compatible programmer. The
idea that if a C++ programmer quits we can just hire another C++ trained developer to take their place.
I can hear agreement from Overload readers as I write this. However, we developers must bear some
of the responsibility here. IT people are known for changing jobs frequently, by doing so we propagate
the myth that we can “hit the ground running” and plug an hole quickly.

This myth includes contractors and consultants - the hired guns of the industry. Managers believe they
can hire consultants for a short-term role and let them go at a moments notice. Consultants like this
myth because it leads to bigger pay packets and “freedom”. But after a while we find managers
dependent on contractors and only willing to hire those who have worked in similar roles already.
Meanwhile, contractors complain that managers treat them like commodities and don’t give them a
chance to do something different.

I’ve been as guilty of this as anybody else. It can be financially rewarding way to work, and it seems to
suit many individuals, and companies like the idea too. However, it leads to an inherent short termism
and propagates the plug compatible programmer myth.

In both cases the process and the product are inherently linked. We shouldn’t be surprised by this,
processes are created to achieve goals. The problem is that just saying a process is there to achieve
“quality” or “on time delivery” does not mean it will. Our processes are far more complex and can
produce results we don’t desire.

This isn’t anything new, this is just another way of stating Conway’s law (1968): organisations will
produce software which is a copy of its own internal processes. If we want to produce good software,

Ruminations on Knowledge in Software Development 1-May-03

(c) Allan Kelly Page 5 of 5

and help our employers succeed, we need to look beyond the immediate issues and see how all the
pieces fit together.

Conclusion

Considering software development as learning and knowledge creation highlights the fact that it is
difficult to communicate and codify what we want from a piece of software - the old “do what I want,
not what I say” syndrome.

While software is key to “information economy” and used by “knowledge workers” we should
consider software development itself as knowledge creation. The software development community
tends to look inside for answer to problems, but there is much we can learn from elsewhere. The
writers quoted here aren’t specifically interested in software developers but their ideas are highly
applicable. Just don’t expect technical solutions, these aren’t technical problems so there is no
technical fix available.

Everything software developers do concerns the application of knowledge and learning. From
specification, through design to delivery we are concerned with using knowledge and developing
products from the application of our existing knowledge and the creation of new knowledge.
Understanding this should help improve the development process.

Bibliography and further reading

Conway, M. 1968: How do committees invent?, Datamation, April 1968

Davenport, T.H., Prusak, L., 2000: Working Knowledge, Harvard Business School Press, 2000.

Kolb, D., 1976; Management and the learning process, California Management Review, Spring 1976,
Volume 18, Issue 3.

Nonaka, I., Hirotaka, T., 1995: The Knowledge Creating Company, Oxford University Press, 1995

Nonaka, I., Konno, N. 1998: The Concept of “Ba”, California Management Review, Spring 1998, Vol.
40, No. 3

Pfeffer, J., Sutton, R., 2000: The Knowing-Doing Gap, Harvard Business School Press, 2000.

WBGH, 1998: Supersonic Spies, Nova, transcript at
http://www.pbs.org/wgbh/nova/transcripts/2503supersonic.html

The UK Channel 4 program Equinox is the US PBS program Nova, in 1998 a programme
covered the development of the Tu-144, the Soviet Unions version of Concorde. A transcript of
the programme is available from the US PBS site. The UK programme may have been slightly
different but the substance was the same.

