
On Management #1 3-Jul-08

(c) Allan Kelly – http://www.allankelly.net Page 1 of 9

On Management
As usual Fred Brooks got here first:

“In many ways, managing a large computer programming project
is like managing any other large undertaking - in more ways than
most programmers believe. But in many other ways it is different -
in more ways than most professional managers expect.” (Brooks
1975)

A few years later he pointed out how important management is:

“Some readers have found it curious that The Mythical Man Month
devotes most of the essays to the managerial aspects of software
engineering, rather than the many technical issues. This bias ...
sprang from [my] conviction that the quality of the people on a
project, and their organization and management, are much more
important factors in the success than are the tools they use or the
technical approaches they take.” (Brooks 1995)

Managing software development is a big topic. It is a mistake to
equate the management of software development efforts with project
management. There are project management aspects to the topic
but they are a subset of the whole. Indeed, the discipline of project
management openly acknowledges this. For example, the UK
Government backed PRINCE 2 project management techniques
excludes all human resources aspects of management.

PRINCE 2 defines a project as:

 “A temporary organisation that is needed to produce a unique and
predefined outcome or result at a prespecified time using
predetermined resources.” (Commerce 2005, p.7)

While I’m sure this describes the situation some readers find
themselves in, I’m also sure that many many more of you find
yourselves in a different type of organization. You are working on
something that doesn’t have an end date, or if it does there will be
another “project” starting on the same code base the next day.

Rather than call these efforts projects a better term is products.
Products unlike Projects go on and on so I prefer the term product.
This introduces a longer time perspective and emphasises the need to
produce something tangible from the work.

Product Management is a discipline in its own right. One that is
understood much better in Silicon Valley and the US than it is in the
UK and Europe. You can replace the word Project with the word
Product but you can’t replace a Project Manager with a Product
Manager as the roles are different. More importantly the skills
needed for each, and the training given to each, are different.

On Management #1 3-Jul-08

(c) Allan Kelly – http://www.allankelly.net Page 2 of 9

Then there is all the other management stuff: recruitment, retention,
assessment, business strategy etc. etc. In other words: there is a lot
to be said about management in the software development arena.

Unfortunately a lot of people have come to believe that “project
management” is the way to manage all IT. It isn’t. There is a lot
more to “software development management” than managing the
project. Limiting our view of management to “project management”
risks harming our work.

So I have decided Overload needs a new series, On Management.
We’ll start with Project Management, move through into Product
Management and take in some of the other stuff along the way. No
time scales, no promises, no defined route, design will be emergent.

In this, and future, articles, I will not hide my agreement with Agile
and Lean thinking. Indeed I will take many of the Agile practices as
given. Agile is a brand, a powerful brand, and a brand that gets most
things right. But it is also a brand that gets peoples backs up. It’s
also a brand that doesn’t go far enough in some respects.

When it comes to management most Agile management practices are
just plain good management. I know not everyone agree with Agile
ideas – and I don’t agree with every word ever written about Agile
development – but at present I think Agile represents the current
state of the art.

Product management, strategy, IT strategy, financing, human
resources – recruitment, retention, objective setting, compensation,
succession planning, and more – and more. There is plenty of
material here. So best to get started...

Triangle of constraints
All software is developed under constraints but there are three which
are more important than others: time, resources and features
(McCarthy 1995).

Others could be added, money being the obvious: Money is,
economists like to tell us, fungible. Which is another way of saying it
can be exchanged for other things very easily. Money can be
exchanged for resources such as a new developer, thereby increasing
our resources. Or money may pay for overtime working thereby
increasing the time we have on a project.

The net result is that introducing money complicates things. Since
(almost) everything can be reduced, or replaced, by money this
analysis leaves money to one side. Rather it is better to regard cost
as a function of time and resources, and revenue as a function of
features. If we increase the time or resources then costs will
increase, and if cost needs to be reduced then resources and/or time
needs to be reduced.

On Management #1 3-Jul-08

(c) Allan Kelly – http://www.allankelly.net Page 3 of 9

Resources is a rather elastic word as well and can include just about
anything. In the name of simplicity, in this context resources is taken
to mean: people (developer, testers, etc.) and the tools they need to
do their job.

These three parameters can be thought of as a triangle:

Figure 1 - Triangle of constraints

Lesson 1: Time, resources and features are the critical factors that
require managing. But they are not the only factors.

All software development takes place within such a triangle. As with
any triangle it is not possible to change one of the three parameters
without changing another:

• More features must be accommodated by either increasing the
amount of time available or adding more resources.

• Delivering a project in less time requires more resources or a
reduction in features.

• Adding more people (resources) to the project either increases the
amount of time it will take or, in theory, allows for more features –
except...

The People issue
That last bullet point sounds OK, doesn’t it? Except the way it usually
works is that adding more people invokes Brooks’ Law:

“adding more people to a project a late software project makes it
later” (Brooks 1975)

Adding people to a project comes at a cost. New people need time to
come up to speed on the system being developed, the requirements,
the existing code base, the technology, etc. etc. Consequently, in the
short run the resources on a project are effectively fixed.

On Management #1 3-Jul-08

(c) Allan Kelly – http://www.allankelly.net Page 4 of 9

In the long run people can be added to a project, and they can
increase the capacity to undertake work but they come at a cost
Therefore, as Brooks’ Law states, if the project is late adding more
people will make it later.

However, if a project is not late, or rather if the project is managed
actively, people may be added to the project, without too much
detriment. Projects which plan to add people can do it in an orderly
fashion.

Lesson 2: Adding people to a project needs to be done in an orderly
fashion.

In fact, it is essential to add people to a project over time because
there is a natural tendency for people to leave a project. People get
offered better jobs, people take time off for health and personal
reasons, overseas workers decide to go home, and people retire.

Lesson 3: Active management seeks to slowly expand a team to
compensate for natural loss.

Obviously there are times when this is inappropriate, such as when a
project is winding down. There are also occasions were it is more
important to add people.

The net result of these forces is that, for any project, in the short
term the resources available are fixed or even reducing. (The short
term may be as short as three months or as long as a year.) Only in
the long term can resources be increased and even then major
increases in resources are not possible.

Consequently, managing software development becomes an exercise
in:

• Human resource management: motivating people, retaining
people, hiring people and training people.

• Managing the time v. feature trade off.

Neither of these trade-offs is, strictly speaking, a Project Management
task. Project management techniques like PRINCE 2 explicitly exclude
managing people. While a Project Manager may be able to offer
advice on time considerations, the decision on whether to include or
sacrifice a feature is a job for someone well versed in business need.
This is a job for a Product Manager or a Business Analyst.

Lesson 4: Human Resource Management is not part of Project
Management. However, when managing a project many of the issues
are people issues.

On Management #1 3-Jul-08

(c) Allan Kelly – http://www.allankelly.net Page 5 of 9

Time v. Features
It’s obvious really: the more time a team has the more work it can do
and the more features it can implement. However, the longer a piece
of work is scheduled to last the greater the expectations and the
greater the risk.

The future is uncertain, the degree of uncertainty increases in
proportion to the length of time considered. Next week is more
uncertain than tomorrow, and next year more so. A competitor may
launch a product and steal the market, legal changes may limit the
products application – as happened to some online gaming companies
– or economic changes may render the software unprofitable.

Neither is it just risk that increases with time, technology advances.
New operating systems, new chips, new discoveries may undermine
the software under development or require re-work.

Lesson 5: The further you look ahead the greater the uncertainty.

In order to cope with these difficulties – and others – it is necessary
to consider shorter time frames. There is significantly less risk
attached to product development which lasts six months than one
lasting two years.

Less risk equates to less cost but there is also revenue to consider. A
product that ships in six months will start earning revenue for the
builder in a quarter of the time it takes the longer project. This
means cash will start flowing that much sooner – especially useful for
start-up companies.

However, shipping a product in a reduced time frame creates two
problems, one technical and one social.

A technical problem
Technically software engineers are taught to, well, engineer. To
design systems that are resilient to change and will stand the test of
time. To stand like a bridge for a hundred years. But software faces
different economics to bridges and buildings.

Unlike most construction projects most of the cost of software occur
after it is initially released – what is euphemistically called the
maintenance phase. It is hard to foresee the changes that are
required during this phase.

A building may be designed by one individual, or by a small group of
individuals. It is then constructed by another, larger, group of
people. However, there is little design, innovation or problem solving
during this phase. Much of the work is performed to industry
standards. Therefore the final structure mostly resembles the original
design.

On Management #1 3-Jul-08

(c) Allan Kelly – http://www.allankelly.net Page 6 of 9

Design, innovation and problem solving occur at every step of
software development. Deciding whether to divide a piece of work
into several classes each with one function or, one class with several
functions is a design decision left to individual developers. The scale
of the task is such that the designer, or architect, cannot have sight
of all the decisions unless they actually perform the work themselves.

Consequently software is the ongoing work of many minds rather
than a few. Naturally there will be differences of opinion and
approach.

Software development is often opportune, if released at the right time
the software can fill a market need and make profit. Releasing the
same software later may miss the opportunity. Therefore the
pressure to “get something” delivered is high.

A late product, no matter how well engineered it may be is often
worthless. But a timely product, no matter how bad may be worth
millions. This dilemma creates the conditions for adverse selection.
Poorly engineered or designed products may often be better
positioned to win. This has problem called worse is better (Gabriel
1990).

These problems bedevil software developers. Software engineers
have yet to find ways of developing software that allow for good
design without imposing excessive economic costs. Test-driven
design, rough up-front design and refactoring are part of that solution
but not the entire solution.

The maintenance phase corollary

Most people who have formally studied software development and
engineering will have been taught that 80% of the cost and effort
expended on software occurs not in the development phase but
rather during the later life time of the software, the maintenance
phase.

But far fewer people appreciate the corollary of this. If this rule holds
for all software it follows that 80% of a developer’s career will be
spent maintaining existing software, or possibly that 80% of
developers will spend their entire career maintaining software.

Given that it might be reasonable to assume that 80% of the research
into software development considers the maintenance phase, or that
80% of the publication relate to maintaining software. Yet neither
seems to be the case.

Prioritisation
The second problem a reduced timeframe creates is the need to
decide which features are included and which are left out. According

On Management #1 3-Jul-08

(c) Allan Kelly – http://www.allankelly.net Page 7 of 9

to our triangle, with fixed resources, if we reduce time we must
reduce the feature set.

Unfortunately this requires tough choices. Development projects are
often like trains. They don’t leave the station very often and when
they do you are either on it or you are not. People will pay a lot of
money to be on a train, or squeeze themselves into a small space
rather than wait for the next one. Worse still, with software projects
it is not always clear that there will be another one.

Consequently lots of people want their requests included in a software
project. Since including a request is relatively cheap there is little
incentive not to include it. Indeed, not including a request risks
offending or upsetting someone, therefore there is an understandable
momentum for including it.

At some point decisions about which features are included and which
are not need to be made. Postponing these decisions is bad for the
development team because they have to consider all requests – or at
least read the documents – and most likely spend time discussing
requirements with stakeholders.

Postponing decisions makes sense not only from a social point of view
but also from a business point of view. The option to develop a new
feature, or not to develop a feature, is exactly that, an option.
Economics, again, shows that options are valuable. (If you want to
know the details read up on Real Options which apply ideas from
financial options to real life problems.)

What is needed is a clear prioritisation process for the development
team. The team need to know what work is required for the next
development period and which is not. They should then ignore all
other requests, to consider any element would unbalance the
economics.

In order to have clear prioritisation somebody – or some group of
people – must be able to make a decision. This individual needs to
have all the information necessary to make the decision, they must be
trusted by the organization and they must be empowered to make
these decisions and make them at the right time.

This role is that of Product Manager. Not all organizations have
Product Managers in name, they have different titles, like Business
Analyst or Product Owner, but many organizations simply do not have
Product Managers at all.

Lesson 6: Product Managers are needed to decide what goes in, and
what does not go in, each software release.

In some organizations Project Managers fill this function. The
problem here is that Project Managers are trained in a different skill
set. They are trained for estimating, project scheduling, risk

On Management #1 3-Jul-08

(c) Allan Kelly – http://www.allankelly.net Page 8 of 9

assessment, issue and progress tracking, reporting and such. They
are not trained to gather information from disparate sources and
make business value judgements.

Priorities should be communicated to development teams in
unambiguous terms. The simplest way to do this is to prioritise
requests as 1, 2, 3, and so on where no two items are allowed to
have the same priority. So there is only one number one priority, one
number two and so on.

Lesson 7: Priorities need to be unambiguously spelt out to teams

Some organizations use the so called “MoSCoW” rules to categorise
items as Must Have, Should Have, Could Have and Will Not Have (or
Would like to Have). Such prioritisations are an abdication of
responsibility on the part of the business. Asking a team to develop
five Must have features turns over the decision to the development
team, when this happens the business loses its right to complain
about the result.

Conclusion
The triangle of constraints governs all software development. Add to
it Brooks’ Law and all decisions come down to questions of how long
a project will take, and which features are included.

To date software engineering has done developers a disservice by
allowing engineering to become top heavy. New engineering
techniques are needed that can be used in short cycles.

The business side of work also faces a challenge: to straighten out
the prioritisation process. There is one ready made answer: to
embrace Product Management but unfortunately too few organization
are using these techniques. Neither is this any guarantee, product
management can be done badly or it can be done well.

And this is just the tip of the iceberg when it comes to managing
software development. A future article will discuss the role of Product
Management in depth, but before then, the next instalment will
discuss quality, time-boxing and focus.

Acknowledgements
Thanks to Ric Parkin and the Overload team for comments and
suggestions.

About the author
Allan has experience both as a software developer and a development
manager – largely with independent software vendors whose very
survival depends on their ability to ship software. He is a regular
conference speaker and contributor to publications on the subject of

On Management #1 3-Jul-08

(c) Allan Kelly – http://www.allankelly.net Page 9 of 9

Agile development and improving software development. His first
book, “Changing Software Development: Learning to be Agile” was
published by John Wiley & Sons in 2008.

He is a trained product manager and project manager – holding
PRINCE2 Practitioner status – in addition to his a BSc in Computing
and Financial MBA.

Allan currently works as a consultant and trainer helping companies
organise their software development activities. He can be contacted
at allan@allankelly.net.

More pieces on this topic and others can be found on his website:
http://www.allankelly.net.

References
Brooks, F. 1975. The mythical man month: essays on software engineering:
Addison-Wesley.

Brooks, F. 1995. The mythical man month: essays on software engineering.
Anniversary edition Edition: Addison-Wesley.

Commerce, Office of Government. 2005. Managing Successful Projects with
PRINCE2. Fourth Edition. London: TSO (The Stationary Office).

Gabriel, R.P. 1990. "Worse is Better." In EuroPAL. Cambridge.

McCarthy, J. 1995. Dynamics of Software Development: Microsoft Press.

