
Allan Kelly
@allankellynet
allan@allankelly.net
http://www.allankelly.net

Craft Conf, Budapest, May 2018

Software Development
is Upside Down

mailto:allan@allankelly.net
http://www.allankelly.net

Allan Kelly

Bringing technology &
business together
Inspiring Agile Teams
• Writing
• Training
• Advising
• Troubleshooting

Mental models

Maybe…
... we need to...

... rethink

Organization &
Management models?

Mental models

Diseconomies of Scale

Software development…

• Does NOT have economies of Scale
• Development has DISECONOMIES of scale

Milk is cheapest
in BIG cartons

Software is
cheapest in
lots of small

cartons

And small cartons
of software
reduce risk

Consider a large project
Against several small

projects

Project A: Risk = 30% Value at risk = £1m
Therefore risk weighted value = £300,000

Prj B: Risk = 15%
Value @ risk = £½m

Therefore … = £75,000

Prj C: Risk = 15%
Value @risk = £½m

Therefore … = £75,000

E: Risk = 6%
@risk = £200k

Therefore = £12k
F: Risk = 6%

@risk = £200k
Therefore = £12k

G: Risk = 6%
@risk = £200k

Therefore = £12k
H: Risk = 6%

@risk = £200k
Therefore = £12k

I: Risk = 6%
@risk = £200k

Therefore = £12k

Software development…

• Does NOT have economies of Scale
• Development has DISECONOMIES of scale

Therefore

• Stop thinking BIG
• Start thinking SMALL

Optimize for lots of Small

• Small batch size (limited amount of work)
• Small code bases
• Small releases
• Small tests
• Small teams
• Small funding
– Allocate £$€ in small batches

Higher quality is faster

Quality… makes all things possible

Philip Crosby

"Quality has much in common with sex.
• Everyone is for it. (Under certain conditions of, course)
• Everyone feels they understand it. (Even though they

wouldn't want to explain it)
• Everyone thinks execution is only a matter of following

natural inclinations. (After all, we do get along
somehow)

And, of course, most people feel that all problems in these
areas are caused by other people."

public class RecentlyUsedList {
private List<string> list;
public RecentlyUsedList() {

list = new List<string>();
}
public string this[int index] {

get {
int position = 0;
foreach (string value in list) {

if (position == index)
return value;

++position; }
throw new ArgOutOfRngExcpt();

}

public int Count {
get {

int size = list.Count;
return size; } }

public void Add(string newItem) {
if (list.Contains(newItem)) {
int position =

list.IndexOf(newItem);
string existingItem =

list[position];
list.RemoveAt(position);
list.Insert(0, existingItem);
} else {

list.Insert(0, newItem); }
}

} }

public class RecentlyUsedList {

private List<string> list = new List<string>();

public void Add(string newItem) {

list.Remove(newItem);

list.Add(newItem); }

public int Count {

get {

return list.Count; }

}
public string this[int index] {

get {

return list[Count - index - 1]; }

} }

Code & refactoring from Kevlin Henney – www.curbralan.com

Low Quality High Quality

Faster!

Low Quality High Quality

Faster!

John Cage

Defects are not free.
Somebody makes them,
and gets paid for making

them

How do you improve quality?

T D D
A T D D
B D D

Quickest way to learn is
to do

Planning is learning

Planning is valuable

But…

IBM 360

IBM 360 at Computer History Museum
Dave Ross: CCL license via WikiMedia

46 years …

1970 OS/360 model 195
• 10,000 KIPS (10 MIPS)

• 4096kb (4Mb)

• COBOL on OS/360

• IMS database

• Monthly rental $250,000

(Approx. $1.25m in 2016 prices)

2016 Raspberry Pi 2
• 4,744 MIPS

• 1 Gb

• Linux

• Python, Scala, Ruby, …

• SQL, NoSQL

• Buy $35

CPU cycles €€€->

Planning is cheap

CPU cycles €€€ ->

Planning is expensive

Va
lu

e
of

 p
la

nn
in

g

Time

Planning has rapidly diminishing
returns

A little planning

is beneficial

M
ore planning does

not add value

Excess p
lanning

reduces value

Planning is learning
Planning is valuable

But…
Planning is expensive
Planning has rapidly
diminishing returns

If you want to finish sooner
Then

Start building sooner

Do it right,
then

Do the right thing

Yesterday

1) Do the right thing
2) Do it right

Decide what the
right thing is

Build it the right
way

Humphrey's Law
Watts Humphrey

“Users do not know what they
want until they see working

software”

The Alignment Trap

Less
Effective

More
Effective

Highly aligned

Less aligned

‘Alignment trap’
11% companies
+13% IT spending
-14% 3 year sales
growth

‘Maintenance zone’
74% companies
Avg IT spending
-2% 3 year sales
growth

‘IT Enabled growth’
7% companies
-6% IT spending
+35% 3 year sales
growth

‘Well-oiled IT’
8% companies
-15% IT spending
+11% 3 year sales
growth

So
ur

ce
: S

hp
ilb

er
g,

 B
er

ez
, P

ur
ye

ar
, S

ha
h:

M

IT
 S

lo
an

 R
ev

ie
w

, F
al

l 2
00

7

1

2

D
oi

ng
 t

he
 r

ig
ht

 t
hi

ng
s

Doing things right

He who learns fastest wins

“We understand that the only

competitive advantage the

company of the future will have

is its managers’ ability to learn

faster than their competitors.”

Arie de Geus, The Living Company 1988

Learn by doing – iterate!

Today

1) Do the right thing
Build a machine which can iterate
A learning machine

2) Do it right
Use the machine to iterate your way to
the right thing

Business

Bring everyone together

Technology
#BusTech

Operations

Development DevOps

Business

#BusTech

1 Team – No divide

#BusTech

“It is time to open up the development
process to include

business people as first class citizens.”

Mel Conway, CraftConf, May 2018

The solution defines the
problem

What problem did iOS 11 solve?

iOS 10 iOS 11

You cannot define what is wanted at
the start

Problem understanding & solution
co-evolve

Challenge / Response
A conversation

Problem

Solution (try this)

Problem

Solution (try this)

Problem

Solution (try this)

Embrace uncertainty &
ambiguity

Solve problems by
redefining them

Edsger W. Dijkstra

“To put it quite bluntly: as long as there
were no machines, programming was no

problem at all;
when we had a few weak computers,

programming became a mild problem,
and now we have gigantic computers,
programming has become an equally

gigantic problem."

1972

0

1E+09

2E+09

3E+09

4E+09

5E+09

6E+09

7E+09

8E+09

1960 1970 1980 1990 2000 2010 2020

Transistors per CPU: 1970->2016

Data from https://en.wikipedia.org/wiki/Transistor_count

2016 Intel 22-core

Xeon Broadwell-E5

(7,200,000,000)

1976 Ziloz Z80

(8,500)

1971 Intel

4004 (2,300)

1975 Mostek

6502 (3,510)

d
o

t
.c

o
m

b
o

o
m

G
ig

a
n

t
ic

 P
r
o

b
le

m

Complexity

Upside down thinking makes it all
more complex

Upside down thinking makes it all
more complicated

LeanPub
https://leanpub.com/cdigital

1. Diseconomies of Scale
2. Higher quality is faster
3. Quickest way to learn is to do
4. Do it right,

then do the right thing
5. Solutions defines problem

