
Why Quality Must Come First

Allan Kelly
allan@allankelly.net
http://www.allankelly.net
Twitter: allankellynet

Skills Matter - In the Brain
March 2011
60 minutes

www.softwarestrategy.co.uk 2

Allan Kelly

•  Training & Coaching for Agile
adoption and deepening

•  Software company specialist
•  Author:

•  Changing Software Development:
Learning to be Agile, Wiley 2008.

97 Things Every Programmer Should Know,
Henney, 2010

Context Encapsulation in Pattern Languages of
Program Design volume 5, 2006

www.softwarestrategy.co.uk 3

Financial Times, 6 February 2011

The London Stock Exchange faces a
battle to restore investor confidence

after a third glitch in four months halted
trading on Friday morning. …

The system failure came… new
system… dogged by teething troubles

www.softwarestrategy.co.uk 4

•  Modularity
•  An iterative approach
•  Responsiveness to

change
•  Putting users at the

core

Something missing… How do you do this
with poor quality?

www.softwarestrategy.co.uk 5

By the numbers

Capers Jones, 2008
Applied Software Measurement

For a large project, the cost of
producing paper documents is
more expensive than the code

itself.

But outranking both
paper and code, the cost
of repairing defects is the

most expensive single
activity.

Projects with low defect potentials and
high defect removal efficiency also have
the shortest schedules, lowest costs and

best customer satisfaction levels

www.softwarestrategy.co.uk 6

Quality, not Qualities

1970’s Leyland Mini
• Rusts quickly
• Doesn’t start well
• Engine floods
• etc. etc

2000’s BMW Mini
• Starts first time
• Engine just works
• Doesn’t rust
• Nice to drive

1970’s Rolls Royce
• Spacious
• Leather upholstery
• Low MPG

Images from Wikipedia: Rolls-Royce
public domain from Bull-Doser; Minis
creative commons licenses, DeFacto
(Leyland), BMW (IFCAR)

www.softwarestrategy.co.uk

Quality without Gold-plating

Fit for purpose
•  No rework
•  Free of bugs
•  Features which work
•  Fewer features make

for more usability
•  Maintainable
•  Knife through butter

testing

No over engineering
•  No unused features
•  No “reusable” code
•  No “that would be cool”
•  No half baked ideas

Quality Minimal

www.softwarestrategy.co.uk

Can you afford to reusable code?

Single Use

“Reusable” - costs three times more

•  Break even on third (re)use
•  Profit on fourth (re)use
•  How much of your code is
(re)used four times?

www.softwarestrategy.co.uk 9

Bugs

•  How much time do you spend finding
bugs?

•  How many testers do you need?
•  How many bugs do you have logged?
•  How many bugs do you fix before

shipping?
•  How much time do you spend in

meetings discussing bugs?

How would your life change if
there were no bugs?

www.softwarestrategy.co.uk 10

Quality is FreeTM

•  Semi-conductors
•  Missiles
•  Cars
•  Etc. etc.

Philip Crosby
1980

Quality is basis of Lean
Lean is the basis of
Agile

Are we in danger
of forgetting

quality?

www.softwarestrategy.co.uk 11

An Old Idea

∑
Original work
Finding defect
Scheduling fix
Fixing
Retesting
Customer
 inconvenience
Schedule
 disruption

>Extra work
to prevent it

www.softwarestrategy.co.uk 12

Agile without quality?

•  How do you know you are done?
•  How do you time box?

•  How do you eliminate Test-Fix cycle?

Agile without
Quality is like

Starbucks without
Coffee

Starbucks image © Louis Abate, Creative Commons License, c/o
Flickr

www.softwarestrategy.co.uk 13

Follow the Logic (iterations)

•  Without quality you need test-fix
•  With test-fix you can’t close an iteration

•  If you can’t close an iteration you can’t be done
•  Thus Iterations (Time-boxes) fall apart

•  Without time-boxes delivery becomes random
•  People retreat to plans and demands

How is this different to the old world?

www.softwarestrategy.co.uk 14

Follow the Logic (design)

•  Without quality you need test-fix
•  With test-fix you practice Refactoring
•  (Too expensive, too slow)

•  Without Refactoring emergent design fails
•  Quality falls
•  More dependence on Big Up Front Design (BUFD)

•  BUFD needs Big Up Front Requirements (BUFR)
•  BUFR prevents changes

•  Without change, Agile is Not Agile

www.softwarestrategy.co.uk 15

Old idea – why didn’t it work?

∑
Original work
Finding defect
Scheduling fix
Fixing
Retesting
Customer
inconvenience
Schedule
disruption

<Extra
work to
prevent
defects

Old solutions made defect prevention very expensive
 Copious documentation, Heavy weight code reviews,
 Manual testing

And very very slow
 Detracted from ability to respond (Agility)

www.softwarestrategy.co.uk 16

Old Idea, New Tools

•  Invest in quality
•  Make defect prevention cheap

•  Continuous integration
•  Virgin install
•  Test Driven Development
•  Acceptance Test Driven Development
•  Lightweight code-reviews
•  Pair programming
•  Static analysis tools

Feedback
based

www.softwarestrategy.co.uk 17

Unit Testing on Steroids

Automated TDD is to Traditional Unit Testing what Amazon
is to Great Universal Stores

www.softwarestrategy.co.uk 18

TDD works!

IBM
drivers

Microsoft
Windows

Microsoft
MSN

Microsoft
Visual
Studio

Defect density
(non-TDD)

W X Y Z

Defect density
(with TDD)

61% of W 38% of W 24% of Y 9% of Z

Increased time
(with TDD)

15-20% 25-25% 15% 25-20%

Nagappan, Maximilien, Bhat and Williams (Microsoft Research, IBM Research, North
Carolina State University). Empirical Software Engineering journal 2008

http://research.microsoft.com/en-us/projects/esm/nagappan_tdd.pdf

www.softwarestrategy.co.uk 19

Code reviews

Capers Jones, 2008
Applied Software Measurement

Formal reviews and
inspections have the highest

defect removal efficiency
levels of any known kind of

quality control activity

and are characteristic of
“best in class” organizations

www.softwarestrategy.co.uk 20

Reprogram the mental model

Too many believe quality is negotiable

A bug here and a bug there, it soon
adds up

Quality is non-negotiable
(if you want to be Agile)

www.softwarestrategy.co.uk 21 2
1

Features &
Functionality

Resources –
People!

Time

Quality is free
(if you invest)

Run scope creep
backwards

Time boxed

Fixed – Brook’s
Law

Cost =
Resources x Time

www.softwarestrategy.co.uk 22

Testers

Agile change model

Developers

Business Analysts

Project Managers

Portfolio

Drive quality
1  Interest Developers

•  Improve quality
2  Enroll testers
3  Refocus Project Managers

•  Deliveries over plans
4  Change Business Analysis

•  Goals over shopping lists
5  Change Portfolio parameters

•  Delivering value over
following plan

6.  Realign Project Managers

www.softwarestrategy.co.uk 23

The Alignment Trap

IT Less
Effective

IT More
Effective

IT Highly
aligned

Less
aligned

‘Alignment trap’
11% companies
•  IT spending +13% higher
than average
•  Sales -14% over 3 years

‘Maintenance zone’
74% companies
•  Average IT spending
•  Sales -2% over 3 years

‘IT Enabled growth’
7% companies
•  IT spending 6% less than
average
•  Sales growth +35% over 3
years

‘Well-oiled IT’
8% companies
•  IT spending 15% below
average
•  Sales growth +11% over 3
year

Source: Shpilberg, Berez,
Puryear, Shah: MIT Sloan
Review, Fall 2007

D
oi

ng
 th

e
rig

ht
 th

in
g

Doing things right

www.softwarestrategy.co.uk 24

Job#1
 Improve quality
 Build an effective delivery
machine

Job #2
 Move outwards and upwards

Can we build it?

www.softwarestrategy.co.uk 25

How much quality can we afford?

•  Lots
•  Quality is free

•  If you invest in it

Thank you!
allan@allankelly.net
http://www.allankelly.net
Twitter: allankellynet

Questions?

