
Software Development as Organizational Learning

Allan Kelly Page 1 of 118

Nottingham University Business School

Software Development as Organizational Learning

Allan Kelly

2003

A dissertation presented in part consideration for a degree in Master of Business

Administration.

Software Development as Organizational Learning

Allan Kelly Page 2 of 118

Abstract

Most literature on software development addresses the subject as an engineering

discipline. As such the discipline is a little over 30 years old, while technology has

changed the dominant paradigm of organization has been one of process and

methodology. While “people” are often cited as the determining factor in success or

failure much less attention has been paid to this side of the discipline.

Since the early days of the discipline there has been an alternative text which places

people centre stage, and rather than taking an engineering perspective takes an

anthropological or sociological view of the discipline. However, this text has lacked

a framework in which to analyse development activities.

This paper proposes Organizational Learning as a framework with which to analyse

software development. Through literature review and qualitative research the

organizational learning perspective is contrasted with the classical engineering

perspective. We find that while the classical view forms part of the software

developers’ identity and can be a powerful force for change it fails to accurately

describe the complexity of the field and may even support a number of social

defences which inhibit software development. The organizational learning view

provides for much richer description and analysis of the field.

While the classical view sees software development as largely separate from the

wider organizational environment the organizational learning perspective embeds

software development within this environment. From this point of view the act of

software development has a role to play in higher order organizational learning by

the company.

Finally, as a predominantly knowledge based activity software development can be

seen as a metaphor for twenty-first century business. In this context we see that the

fetish of methodology can hinder the emergence of knowledge and capabilities.

Software Development as Organizational Learning

Allan Kelly Page 3 of 118

 “In many ways, managing a large computer programming project is like

managing any other large undertaking - in more ways than most programmers

believe. But in many other ways it is different - in more ways than most

professional managers expect.”

Frederick P. Brooks, The Mythical Man Month (1975, p.vii)

 “Software entities are more complex for their size than perhaps any other human

construct, because no two parts are alike”

Frederick P. Brooks, No Silver Bullet (1986)

“Some readers have found it curious that The Mythical Man Month devotes most

of the essays to the managerial aspects of software engineering, rather than the

many technical issues. This bias ... sprang from [my] conviction that the quality

of the people on a project, and their organization and management, are much

more important factors in the success than are the tools they use or the technical

approaches they take.”

Frederick P. Brooks, The Mythical Man Month

- Anniversary Edition (1995a, p.276)

Software Development as Organizational Learning

Allan Kelly Page 4 of 118

Table of Contents

Abstract ... 2

Table of Contents .. 4

Table of Figures... 6

Acknowledgements ... 7

1 Introduction.. 8

1.1 Software business.. 8

1.2 Key thesis.. 9

1.3 A brief history of software development .. 10

1.4 Audience ... 12

1.5 A note on terminology .. 12

2 Literature Review... 14

2.1 A historical view of software development and the emergence of methodology 14

2.2 Domains of development .. 20

2.3 Critique of the classical view.. 20

2.4 Application of an organizational learning paradigm... 23

2.5 Summary of literature review ... 46

2.6 A framework for exploring learning in software development................................. 46

3 Objectives and research methodology.. 49

3.1 Objectives ... 49

3.2 Methodology... 49

4 Research ... 53

4.1 Overview... 53

4.2 Interview thumbnails .. 54

4.3 Use of the framework.. 60

5 Discussion .. 67

5.1 How does the classic view emerge?.. 68

Software Development as Organizational Learning

Allan Kelly Page 5 of 118

5.2 What aspects of organizational learning do we see?... 71

5.3 Success and Failure... 94

5.4 The musical metaphor... 97

5.5 Does learning view add value? ... 98

6 Conclusion ... 101

6.1 Implications for managers... 102

6.2 Further research .. 103

6.3 Brooks reprised ... 104

Appendix A Research questionnaire .. 105

Appendix B Process diagrams ... 106

B.1 Warehouse Software ... 106

B.2 Bulk Mailing ... 107

B.3 Transport Corp.. 108

Appendix C Glossary ... 109

Appendix D Supplementary sources .. 111

Bibliography.. 113

Software Development as Organizational Learning

Allan Kelly Page 6 of 118

Table of Figures

Figure 1 Software development is part of organizational change ... 8

Figure 2 - Factors driving towards a re-assessment of software development........................ 11

Figure 3 - Overview of Literature Review .. 14

Figure 4 - Senge's five disciplines are closely related... 28

Figure 5 - Two views of organizational learning .. 30

Figure 6 - Reconciling organizational learning and knowledge creation 32

Figure 7 - Practices and inhibitors to learning and knowledge creation.................................. 39

Figure 8 - Business and technology are in conflict ... 67

Figure 9 - Single loop learning reinforced mental model of deadlines 75

Figure 10 - Single loop learning reinforced goal displacement... 76

Figure 11 - The Resource pool at Warehouse Software.. 83

Figure 12 - Identity is central to teams, vision and leadership while inquiry, relfection and

communication revolve around these themes .. 85

Figure 13 - Single loop learning reinforces identity at Hedge Fund Inc 96

Figure 14 - Research questionnaire ... 105

Figure 15 - Overview of development process at Warehouse Software 106

Figure 16 - Overview of the development process at Bulk Mailing...................................... 107

Figure 17 - Overview of the development process at Transport Corp 108

Software Development as Organizational Learning

Allan Kelly Page 7 of 118

Acknowledgements

There are many people who have helped, directly and indirectly, in the creation of

this paper and to whom I am most grateful. Firstly I would like to thank my

supervisor, Professor Ken Starkey for his guidance, suggestions and encouragement.

Secondly, I would like to thank the interviewees who helped with my research for

their time and confidence. Although only identified by pseudonyms here I am sure

they will recognise themselves, thank you.

I must also thank everyone at EuroPLoP 2003 - the European conference on Pattern

Languages at Kloster Irsee in June 2003. Many of the participants present, and

some of the papers presented, where wrestling with the issues considered here.

Knowingly or unknowingly, many of the participants served as sounding boards for

my ideas and helped in their formation. I am convinced that the fields of knowledge

management and organizational learning have yet to realise the potential of pattern

languages.

Thanks too, to my sister-in-law, Nicki Kelly for proof reading and pointing out

numerous errors in my English, all mistakes that remain are my own.

Finally, I must thank Nottingham University Business School, the school staff, and

the MBA class of 2002-2003 for an incredible year.

Allan Kelly

September, 2003

http://www.allankelly.net

Words and tables by Word and Excel ’97, bibliography by Endnote 7.0, pictures by

Inspiration 7.0; Mozilla for mail and web and CuteWriter for PDFs all on top of my

trusty Compaq Presario laptop.

Software Development as Organizational Learning

Allan Kelly Page 8 of 118

1 Introduction

1.1 Software business

Modern businesses depend on computer software. Whether it be a commodity

shrink-wrapped package like Microsoft Excel or a bespoke application which

supports a unique competency of the organization, there can be few companies

which would adopt their current structure today without software support.

All software must, in the first instance, be created through the writing of program

code. This is fundamentally a human task. Over the years different tools have been

proposed and created to reduce this task, however, these tools have met with mixed

success. Even when a tool is successfully used all it really does is allow the human

software developer to work at a higher level of abstraction and, hopefully, more

productively. The creation process is still fundamentally a human activity.

It is easy to forget about the development process when considering the use of IT in

the business strategy. However all IT ultimately depends on software development

somewhere. Some may consider development a simple matter of programming

(SMOP) however to do so is to overlook the role software development, and

developers themselves, can play in IT deployment and wider organizational change.

Figure 1 Software development is part of organizational change

Software Development as Organizational Learning

Allan Kelly Page 9 of 118

Obviously, organizational change can happen without IT, but the reverse is not true.

Whether intended or not, organizational change occurs when IT systems are

deployed and software is a key factor in any such deployment.

Software may be developed in-house, in which case it is a business necessity for

those involved to understand their role in the change process. Alternatively,

software may be bought in, perhaps common-off-the-self (COTS) in which case, the

external developers need to understand how their software may be used.

1.2 Key thesis

The key thesis of this paper is:

The tools, techniques, and literature of the organizational learning community

can usefully be applied to the software development process. To date, analysis

of this process has primarily viewed it as an engineering activity. This has lead

to an emphasis on technical solutions that may obscure or inhibit learning

processes both within the development process, and within the wider

organization.

There are three dimensions embedded within this thesis:

• Modern business is dependent on software: therefore it is essential that managers

understand the role of IT in organizational change.

• Software developers can benefit from better understanding of change and

learning processes, and their role in both.

• As a knowledge based activity, software development is a metaphor for the

modern business which can provide valuable insights for the entire organization.

By describing software development as a learning activity it is hoped to show that

two advantages accrue:

• This view provides for a better understanding of the development process,

allowing for process improvement and thus improving the firm’s competitive

position.

• Insights from software development may inform the debate on organizational

learning and knowledge management, and the wider domain of business

administration.

In addition, there is a need to recognise that learning does not only occur during the

development process but continues once software has been delivered to customers.

Software Development as Organizational Learning

Allan Kelly Page 10 of 118

Indeed, rather than viewing the customer/end-user as a static entity, we may view

them as an active participant in the learning process that is software development.

1.3 A brief history of software development

The theoretical foundations of the programmable computer were laid by Alan

Turning in his 1937 paper, On Computable Numbers (Singh, 1999, p.168-169). In

this paper he described the Universal Turing Machine that could be programmed to

decide any computable question. It was another six years before such a machine,

Colossus, was built by Tommy Flowers (Singh, 1999,p.244, Smith, 1998, p.9).

With the creation of the first programmable computer the age of computer

programming was born.

The 1960’s saw the arrival of the first large computer systems, most notably OS/360

for the IBM/360 mainframe. It quickly became apparent that large systems were

difficult to develop and were prone to cost and time over runs. Yet it was becoming

more apparent that software was key to new products and, for NATO weapons

systems.

So concerned was NATO that it convened two conferences in 1968 and 1969 on the

subject. The 1968 conference at Garmisch in Germany coined the term “Software

Engineering” and declared there to be a “software crisis” with the demand for

software development running far beyond the ability to develop it.

The “software crisis” never really went away, nothing ever happened to resolve the

crisis, but, after 35 years it is difficult to use the word “crisis” about what seems to

be a fact of life.

One response was the emergence of methodologies. These described the steps that

needed to be taken in order to develop a piece of software in an engineering fashion.

Arguments raged about which methodology was best, which order to do things in,

how to maintain flexibility and how detailed the methodology should be, but no

methodology ever succeeded in providing the silver bullet (Brooks, 1995b) to

produce software on time, and to budget.

The only thing the competing authors seemed to agree on was that if we could only

find the correct ceremony to produce software, and follow it rigorously all would be

well. Such methodologies have been characterised as “high ceremony.”

Describing software development as engineering or as a methodical process fails to

explain much of what happens when developing software. An alternative view has

grown up which regards software development as a social activity. These authors

Software Development as Organizational Learning

Allan Kelly Page 11 of 118

(e.g. Brooks, 1995a, Weinberg, 1998, DeMarco, 1987, Kidder, 1981, Constantine,

1995, Argyris, 1977) tend to express a minority view which is neglected in much of

the subject teachings. The majority of writings on software development come from

technological and methodological point of view.

During the late 1990’s this cycle of beggar-thy-neighbour methodologies started to

break down. The rate of business change had accelerated and the high ceremony

methodologies could not keep up. Researches such as Fitzgerald (1994, 1995,

1997) and Truex (2000) started to question the logic of the methodologies. In

parallel a new generation of writers (e.g. Beck, 2000, 2001, Cockburn, 2002) from

the “code-face” of programming started to advocate Agile Software Development

using “low ceremony” methodologies taking their inspiration from the Lean

Manufacturing movement.

Figure 2 - Factors driving towards a re-assessment of software development

The turn of the century IT spending binge and the dot-com crash have left many

wondering about the true value of IT. Such a climate demands a new view of IT

and software development itself.

Software Development as Organizational Learning

Allan Kelly Page 12 of 118

1.4 Audience

This dissertation is written as part of a Master’s in Business Administration degree

at the University of Nottingham Business School. The primary audience for this

report is the scholarly community. In the first instance this audience consists of

examiners from the University, but in the longer term, it is hoped this community

will include researchers from both the fields of organizational learning and software

development.

It is also hoped that this dissertation will find a second audience amongst those in

the software development community who are looking for new approaches to

development.

1.5 A note on terminology

The term software development, sometimes abbreviated to just development, is used

extensively throughout this paper. Some authors prefer to use the term system

development, and some prefer the term information system development (ISD). For

the purposes of this paper these terms are all treated synonymously.

Traditionally the term computer programming, or just programming, has also been

used in this context and some of the older texts referenced use these terms. While

strictly speaking programming is but one part of the software development activity

when used here the term it is also considered to be synonymous with software

development.

Many current texts prefer to use the term software engineering; while this may be a

further synonym, use of this term implicitly accepts the definition of software

development as a engineering discipline supporting the dominant paradigm.

Therefore use of this term has been restricted wherever possible.

Software development falls within the wider domain of Information Technology - or

IT - this term is also used widely. The term is used in this paper when the

arguments advanced can be generalised to the wider domain.

In addition the terms Information Systems (IS), Information Communication

Technology (ICT) and Management Information Systems (MIS) are taken to be

synonymous with Information Technology for our purposes.

Finally, the term “hacker” is used in its original sense:

“A person who enjoys exploring the details of programmable systems and how

to stretch their capabilities” (Raymond, 2003)

Software Development as Organizational Learning

Allan Kelly Page 13 of 118

The term is also extended colloquially as a derogatory term to describe on who

writes software without any design or forward thinking. Unfortunately the popular

press use the term to refer to what Raymond calls a cracker:

“One who breaks security on a system.” (Raymond, 2003)

Appendix C provides a short glossary of other terms and abbreviations.

Software Development as Organizational Learning

Allan Kelly Page 14 of 118

2 Literature Review

Figure 3 - Overview of Literature Review

2.1 A historical view of software development and the

emergence of methodology

Initially software systems were small enough for one person to comprehend.

Although they may have been complex in their day they were easily comprehended

by the advanced mathematicians and engineers who worked with the systems. Even

for many small systems today a single developer, or lone hacker, is quite capable of

writing a system, but for many systems development is a team activity.

As the size and complexity of systems increased the obvious answer was to add

more people:

Software Development as Organizational Learning

Allan Kelly Page 15 of 118

“... the worst way to do a programming project is to hire a horde of trainees and

put them to work under pressure and without supervision - although this is the

most common practice today [1971]” (Weinberg, 1998, p.69)

Despite Weinberg’s early warning this is a lesson the software industry continues to

make:

 “The earliest software lifecycle, one still in use today, is the Mongolian Hordes

approach. This works from the assumption that finished code is always full of

bugs, so the sooner you can produce the finished code, the quicker you can get

down to removing the bugs.” (Ince, 1990)

The “don’t plan, just code” approach has been characterised as “hacking”.

McConnell expresses a common view that a preparation phase, with extensive

planning, is vital. He suggests failure to do sufficient planning is due to managers

pressuring programmers to start coding - this he names WISCA syndrome, “Why

isn’t Sam coding anything?” (McConnell, 1993, p.23)

This “just add more people” approach gave birth to Brooks’ Law:

“Adding more manpower to a late software project makes it later.” (Brooks,

1995a, p.25)

Brooks has been called “the farther of the IBM System/360” and his seminal 1975

work, The Mythical Man Month, drew on his experiences as project manager for the

IBM/360 and later the machine operating system - OS/360. Brooks described the

failings of contemporary software development and suggested new ways of

working.

Eleven years later Brooks suggested there were No Silver Bullets:

“There is no single development, in either technology or management technique,

which by itself promises even on order of magnitude improvement within a

decade [of 1986] in productivity, in reliability, in simplicity.” (Brooks, 1995b)

Over the years many silver bullets have been proposed, some technological, some

managerial. This paper is concerned with the latter. These managerial silver bullets

have taken the form of methodologies.

2.1.1 Methodologies

Brooks’ OS/360 project may have been the biggest software project in its day but it

was the shape of things to come. By the late 1960’s it was clear that relying on a

lone programmers or Mongolian Hordes was not the way to proceed.

Software Development as Organizational Learning

Allan Kelly Page 16 of 118

At first the response was to describe the development process, Royce (1970)

describe the “waterfall model” - according to Brooks (1995a, p.265), Royce was

simply describing what he saw on the Gantt chart. This was a sequence of steps that

occur to produce any software:

• Requirements gathering

• Specification writing

• Architecture/Design

• Coding

• Testing

• Operation

• Maintenance

No software engineering text is without its description of this model (e.g.

Somerville, 2001, Pressman, 1997). Despite being widely acknowledged as

fundamentally flawed it is embedded in culture.

Using this model it is quite easy to apply the scientific management principles of

F.W.Taylor (Mullins, 2002, p.55). We see the emergence of methodologies

claiming to deliver software on time, and on budget. Workers are grouped by task:

business analysts gathering requirements and writing specifications, software

architects and designers constructing designs, programmers writing code for testers

to test before the product is put handed over to operations staff and a different group

of maintenance programmers to fix bugs.

Over the years various methodologies have been developed which, to a greater or

lesser degree are based on the waterfall model, or, attempt to overcome the

limitations of the model. For example Yourdon’s Structured Project Life Cycle

(Yourdon, 1989), “Jackson” System Development (Jackson, 1983), Object-Oriented

Analysis and Design (Booch, 1994), Object-oriented Software Construction (Meyer,

1988). One of the most widely documented and studied methodologies is

Structured System Analysis and Development Method known as SSADM (Eva,

1991, Duncan, 1995, Downs, 1988) and also known as Business System

Development, British Standard BS7738. This was mandated for UK Government

Projects during the 1980’s and 1990’s but now appears to be only “best practice.”

Essentially, each methodology describes the steps required in the application of

technology to a (business) application context. Advocates of methodologies

Software Development as Organizational Learning

Allan Kelly Page 17 of 118

attribute a number of benefits both to methodologies in general, and usually, to the

methodology they advocate. Typical of these would be:

“There are three primary objectives [for having a project life cycle]:

1. To define the activities to be carried out in a system development cycle.

2. To introduce consistency among many system development projects in the

same organization.

3. To provide checkpoints for management control for go/no-go decisions.”

(Yourdon, 1989, p.79)

Despite the multitude of methodologies (over 300 were identified by Fitzgerald in

1994) and tools to choose from, software developments continue to fail. For some

the response is to improve the methodologies:

“Many researchers see the solution to the software crisis in terms of increased

control and the more widespread adoption of rigorous and formalised system

development methodologies” (Fitzgerald, 1994)

Yet, adopting a more rigorous methodology has problems too. Wastell studied the

use of SSADM, one of the most prescriptive “high ceremony” methodologies:

“Far from facilitating the development process, SSADM encouraged a rigid and

mechanical approach in which the methodology was applied in a ritualistic way

which inhibited creative thinking. The argument is thus, that methodology,

although its influence may be benign, has the potential to operate as a ‘social

defence’, i.e. as a set of organizational rituals with the primary function of

containing anxiety.” (Wastell, 1996, p.25)

DeMarco and Lister pre-empted Wastell’s findings by nine years:

“You encourage this defensiveness when you try to systemize the process, when

you impose rigid methodologies so that staff members are not allowed to make

any of the key strategic decisions lest they make them incorrectly.” (DeMarco,

1987, p.8)

Behind all methodologies is the assumption that there is a rational, repeatable set of

steps for writing software. That we only need to apply these steps correctly and we

can produce any piece of software we like. DeMarco and Lister make a useful

distinction:

“There is a big difference between Methodology and methodology. Small m

methodology is a basic approach one takes to getting the job done. It doesn’t

Software Development as Organizational Learning

Allan Kelly Page 18 of 118

reside in a big fat book, but rather inside the heads of the people carrying out the

work. ...

Big-M methodology is an attempt to centralize things. All meaningful decisions

are made by the Methodology builders, not by the staff assigned to the work.”

(DeMarco, 1987, p.114)

They go on to attribute the claimed benefits for Methodologies not to the method

itself but to the benefits of convergence (i.e. developers know what to expect from

one another) and Hawthorne effect - the well documented tendency of people to

perform better when trying something new.

2.1.2 The call of rationality

 “... the ‘rational design process’ of hierarchical top-down design described by

Parnas and Clements (...) is definitely not the way we humans design real

systems. Instead, we hop around from level to level, getting good solution

insights (...) at seemingly random time.” (Boehm, 2001)

In their 1986 paper Parnas and Clements describe a rational development process; as

they point out, it seems reasonable that if one is to specify or study a process it

should be rational. Importantly however, they recognise that it is difficult to follow

any rational process. Of the reasons they give for this, several are of particular

interest:

 “1. In most cases the people who commission ... [the] system do not know

exactly what they want and are unable to tell us what they know.

2. ... Many of the details only become known to us as we progress in the

implementation. Some of the things we learn invalidate our design and we must

backtrack.

3. ... human beings are unable to comprehend fully the plethora of details that

must be taken into account in order to design and build a correct system.

...

6. We are often burdened by preconceived design ideas.” (Parnas, 2001, p.356)

Here we see several dimensions of learning described:

• Learning by customers who learn exactly what they want and learn to

communicate it.

• Learning by doing, and the use of feedback loops.

Software Development as Organizational Learning

Allan Kelly Page 19 of 118

• Gradual learning of details as they become important, that is, developers learn to

understand the complexity over time.

• Existing preconceptions inhibiting design and failure to unlearning as the

development progresses.

While recognising that a hierarchical rational process will have difficulty with these

learning activities Parnas and Clements suggest that a base line, rational, process is

still useful. Such a process helps to guide developers in their work and facilitates

communication with others, in particular, those new to the project.

In effect we have a dilemma: the rational process is desirable, but is unrealistic. The

solution offered by Parnas and Clements is novel: fake it.

“The process is ‘faked’ by producing the documents we would have produced if

we had done things the ideal way. One attempts to produce the documents in the

order we have described here.” (Parnas, 2001, p.366)

In effect, Parnas and Clements are saying: “We recognise there is irrationality in the

development process, we recognise the appeal of rationality, we can only reconcile

the two by faking the rationality.”

While Parnas and Clements freely acknowledge they would like to run software

development as a rational process they also recognise that this “Philosopher’s

Stone” is unachievable. They recognise that learning must occur during the

development process.

However, the authors also recognise that some degree of control is necessary. In

explaining why the “Philosopher’s Stone” is desirable (Parnas, 2001, p.357) they

echo Yourdon’s thinking (section 2.1.1). These points can be summarised as:

• Designers need guidance if they are not to be overwhelmed by complexity.

• Accepting an approximation of the ideal process will bring us closer to the ideal

process than a random ad hoc process.

• It enables transfer of people, resources and knowledge between projects within

an organization.

• It is easier to conduct project review and measurement.

Within certain parameters, Parnas and Clements are giving developers freedom to

customise, or create their own processes. By laying down some restrictions they are

creating tight-loose (Peters, 1991, p.318) control mechanism which may be

conceived as a form of creative tension (Senge, 1990, p.150). However, Parnas and

Software Development as Organizational Learning

Allan Kelly Page 20 of 118

Clements do not intend to create a tight-loose or creative-tension environment, their

motivation is a pragmatic response to what they see happening.

Parnas’ argument is a vividly illustration of the thinking of Mintzberg:

“Mintzberg argues strongly that we want to be rational but that is difficult to deal

with our complicated world in a rational fashion.” (Starkey, 1996, p.261)

However, Parnas’ solution, to fake the rational, is somewhat different to Mintzberg:

“we need a management process that is sensitive to both the need for emergent

learning and to the practical possibilities, and limitations, of deliberate

planning.” (Starkey, 1996, p.262)

2.2 Domains of development

Before continuing the discussion it is useful to introduce some terminology. So far

we have only considered the development process, or methodology. However we

should not forget that the objective of the process is to bring technology in the form

of software, and maybe hardware, to bear on a business problem area. Coplien has

used the term “domain” to differentiate these fields:

“A domain is an area of specialization or interest. We talk about the application

domain - the body of knowledge that is of interest to users. ... We walk about the

solution domain, which is of central interest to the implementors but of only

superficial interest to system users.” (Coplien, 1999, p.7) (italics in original)

To these terms we will add process domain to talk of the body of knowledge

concerning the software development process. Most of the literature reviewed up to

this point has concerned itself with process domain.

(Some authors have used the term problem domain as an alternative to Coplien’s

application domain.)

2.3 Critique of the classical view

2.3.1 An amethodical perspective

The views of software development documented so far have conformed to the

prevailing paradigm of software development as a methodological processes. Yet

even esteemed authors like Parnas and Boehm recognise the difficulty operating

such a practice. Authors such as Fitzgerald and Wastell question the controlling

nature of methodologies.

Software Development as Organizational Learning

Allan Kelly Page 21 of 118

Truex, Baskerville and Travis go further and question the dominant position of

methodological paradigms in the software development field (Truex, 2000). They

point out that the terms “information system development” and “information system

development method” have, in effect, been merged, giving method a privileged

position in the literature. Consequently the literature has neglected much of what

actually happens in the development process:

“The marginalized [amethodical] text suggests that information systems

development unfolds differently [to that] previously believed and that developers

adapt methods to particular situations. Developers are successfully mixing and

matching elements from seemingly contradictory systems methods” (Truex,

2000)

If we accept the need for methodologies, and that they are necessary for successful

software development, then the methodology-less developers observed by Truex

should not succeed in their work. Surely methodologies exist to organise

development and save managers from Mongolian Hordes? Fitzgerald offers an

explanation:

“Non-use of a methodology is not a licence to conduct development in a sloppy

or careless manner. Those who suggest that the failure of practitioners to use a

formalised methodology is due to ignorance or a lack of awareness on their part

may not be presenting a totally-accurate picture. An appropriate analogy might

be that of Picasso dispensing with conventional artistic perspective, but from a

position of superior knowledge. ... In practice, situations will inevitable arise

where the developer needs to step outside the methodology, but formalised

methodologies often serve to impose a considerable inertia on the development

process. Indeed, the degree of inertia is proportional to the degree of formality of

the methodology.” (Fitzgerald, 1994)

While there is a good case why formal, rational, methodology should be used to

bring order to the development process it seems that development does not occur in

a methodological manner. Indeed, Howcroft and Wilson (2003) suggest that trying

to understand it as a rational process obscures other views, specifically, the political

view - a view also considered by Robey and Markus (1984).

Given that the classical software development literature is centred around the

rational, and specifically, methodology, how are we to characterise the software

development if the classical understanding is so flawed?

Such is the situation that Fitzgerald has likened methodology to a lamppost:

Software Development as Organizational Learning

Allan Kelly Page 22 of 118

“an analogy could be drawn with that of the drunk losing his watch in the street

and moving to look for it under the light of a lamppost because the light is best

there, even though it had been lost somewhere else. Likewise, it is perhaps easier

to conduct research on existing methodologies as the light is best there, rather

than to investigate the real complexity of systems development” (Fitzgerald,

1995)

2.3.2 Towards a new understanding: why apply organizational

learning to software development?

So far we have seen that the classical, rationalist, approach to software development

has centred on prescriptive, even ritualistic, adoption of a methodology. We have

also seen that there is good reason to question this approach, however, the language

and tools used to evaluate the development process are themselves tainted by

association with the methodologies. By confining the language of the debate to the

rational the political context is marginalised, and by choosing process as the tool of

analysis non-conforming actions are viewed as deviant.

What is a required is a set of tools, a framework, through which we can examine the

process domain without using the language of the domain. Yet, the results of this

analysis must be applicable to the domain. For all their faults, methodologies

contain important ideas, working practices and knowledge - these have often been

distilled from developer culture and working practices. We should not seek to

destroy them en masse but to extract what is worthwhile.

As we have already seen there is a strong undercurrent of learning in the IT

community. Indeed, given the rapid pace of change and introduction of new

technologies there is a constant need for software developers to learn. For example,

in 1993, the internet as we know it did not exist. To support its growth over the last

10 years the software development industry has developed, and widely adopted a

myriad of technologies from languages such as Java, Perl and Python, to

communication protocols such as HTTP, SMTP, IP v6.0, etc. Clearly there is

learning, innovation and change occurring in the IT community at a rapid pace.

It therefore seems logical that the application of theories of learning to this field

may yield some interesting findings. In particular, in the context of group and

organization learning it seems the organizational learning theories advocated by the

likes of Argyris, Senge, Brown and others may be useful.

Software Development as Organizational Learning

Allan Kelly Page 23 of 118

While the People Capability Maturity Model (PCMM) (Curtis, 2001) from the

Carnegie Mellon Software Engineering Institute could provide a useful framework

for this investigation the model is rooted in the quality-through-process movement

and is still prescriptive in nature:

“The People CMM is a process-based model which assumes that workforce

practices are standard organizational processes that can be continuously

improved through the same methods that have been used to improve other

business processes.” (Curtis, 2001, p.15)

Although PCMM acknowledges the importance of learning, and knowledge

management in software development it makes little direct reference to

organizational learning, or to the theories of Argyris and Senge, and therefore is not

suitable for our purposes.

2.4 Application of an organizational learning paradigm

2.4.1 Can organizational learning be applied to software

development?

The lens of organizational learning has been applied to the field of software

development before (Ang, 1997, Cusumano, 1995, Argyris, 1977, Huysman, 2000,

Robey, 2000, Edberg, 2001, Stein, 1996) and as long ago as 1971 Weinberg

described software development as learning:

“Specifications evolve together with programs and programmers. Writing a

program is a process of learning - both for the programmer and the person who

commissions the program.” (Weinberg, 1998, p.12)

As has already been suggested, there is a learning process at work in the

development of software. Coplien uses the term knowledge (1999) to describe the

contents of the solution and application domain, this implies a learning process has

occurred to create the knowledge. Elsewhere Coplien and Harrison (2003) draw

parallels between their work on organizational patterns in software development and

organizational learning and suggest they have observed triple loop learning during

software development.

The Edberg and Olfman study looks at the relationship between organizational

learning and software maintenance (“maintenance work performed to change an

existing software system after that system has been transferred to its intended

recipient” (Edberg, 2001, p.1)). This is particularly interesting because

Software Development as Organizational Learning

Allan Kelly Page 24 of 118

“it merges the technical literature on software maintenance with the managerially

oriented research into organizational learning” (Edberg, 2001, p.9)

Edberg and Olfman observe that:

“Existing research and practice views software as an expense incurred after

development that should be contained through better development

methodologies, better evaluation of system characteristics, better enforcement of

programming standards; and more participation of users during initial systems

development” (Edberg, 2001, p.1)

Their study finds that 40% of software enhancements had learning as the primary

motivation - although other motivations could be also be important. When refusing

enhancements the IS departments acted as a learning inhibitor. Software changes

which were made could be seen as example of individual learning benefiting the

group.

Ang et al (1997) considered the role of learning within the whole organization as an

insurance company attempted to develop and deploy an IT system. Taking the view

that IT deployment took the form of a change episode within the organization the

researchers identified instances (p.332) of single and double loop learning.

Again, it was pointed out that IT can act not only as an enabler of organizational

learning but as an inhibitor (p.331) because of the ability to freeze practices and

prevent further change. The role of IT as a hindrance to organizational learning has

also been considered by Gill (1995) who emphasises that IT is often used thin the

ranks of middle managers - exactly the people who Nonaka (1995, p.127) identifies

as knowledge creators.

Similarly, Stein (1996) identified opportunities and obstacles for higher order

learning in organizations through the development and implementation of new

systems. The role of developer as knowledge engineer, and their sensitivity to

organizational issues were identified as critical success factors.

Although Ang et al were primarily concerned with the higher order learning of the

organization as a whole they do, briefly, discuss the role of IT staff in the change

process (p. 333). They identify four ways in which software designers and

implementors can facilitate higher order learning within the organization:

• Developers have a legitimate reason to study and enquire into the operation of

the business.

Software Development as Organizational Learning

Allan Kelly Page 25 of 118

• Through technology the developers engage in the discovery of assumptions and

mental models, and (because of their legitimacy) can question these assumptions.

• Involving end-users in the design process provides an opportunity to enroll users

in the change and commit them to the changed environment.

• Introducing the new system freezes the change process in the new model.

Potentially this process may lead to the perceived “failure” of IT implementations.

In the first instance developers have initiated a learning process, potentially this

continues even when the developers withdraw, either because they advance to the

next stage and finished user consultations, or because a “finished” system is

delivered. However, the users to whom the system is delivered do not hold the

same mental models which they held when the system was designed, and it is likely

their learning continued after final consultations.

The developers discussed by Ang (p.333) are acting as enablers of learning, agents

of change and even knowledge engineers. In introducing successful change good

social skills are desirable, however, there is a general perception, if only anecdotal,

that IT staff frequently lack good social skills. If true, IT staff acting as change

agents are taking on roles for which they lack suitable skills.

The Ang paper demonstrates that the organizational learning perspective can be

usefully applied to the IT environment. However, it sheds little light on how the

software development process itself engages in learning.

Robey et al (2000) have suggested that researchers are only beginning to investigate

the relationship between information technology and organizational learning.

Robby identifies two streams of research. The first is concerned with the

application of organizational learning in the IT environment, while the second is

concerned with the use of IT to assist organizational learning.

This paper is concerned with the first of these streams of research which Robey

suggests started with Agryris’ 1977 paper - “Organizational learning and

management information systems” (Argyris, 1977). Argyris argued that

organizational learning theory could usefully contribute to the debate on the

“software crisis.” The 1977 piece appears to be the earliest attempt to directly link

organizational learning and software development, although Argyris spends most of

his time discussing MIS system design rather than the development process

specifically. It appears this avenue of research has been ignored by the software

engineering community.

Software Development as Organizational Learning

Allan Kelly Page 26 of 118

2.4.2 How can we define organizational learning?

If we wish to study organizational learning it is necessary to define what we mean

by organizational learning. Mullins provides a good starting point:

“Learning: a change of a relatively permanent kind which may result in new

behaviours and actions or new understanding and knowledge gained through a

formal process or spontaneously and incidentally through life experiences.”

(Mullins, 2002, p.904)

“Learning organization: An organization which encourages and facilitates the

learning and development of people at all levels of the organization, values the

learning and simultaneously transforms itself.” (Mullins, 2002, p.905)

However, Mullins’ brief definitions hide a lot of detail and a lot of debate, as noted

by Cusumano and Selby:

“Organizational learning is a very broad subject that appears frequently in recent

management literature.” (Cusumano, 1995, p.327)

To be sure, for their own study Cusumano and Selby take a pragmatic position:

“We chose to interpret this concept in practical terms. Organizations have many

opportunities to improve what they do: They can reflect on their operations,

study their products, listen to their customers, and encourage difference parts of

the organization to share knowledge...” (Cusumano, 1995, p.327-328)

The pragmatism of Cusumano and Selby is worth emulating, however, as with

Mullins they associate the term “knowledge” with “organizational learning.” This

raises questions about the learning-knowledge relationship, something that has

troubled Nonaka when considering knowledge creation:

“In the accumulation of over 20 years of studies, they [organizational learning

writers] have not developed a comprehensive view on what constitutes

‘organizational learning’.” (Nonaka, 1995, p.45)

Nonaka’s criticism does not mean the field is barren only that it is difficult to define

the edges of the field. One reason for this may be the division in literature identified

by Argyris and Schön:

“One branch of the literature - prescriptive, practice-oriented, value-committed,

sometimes messianic, and largely uncritical - treats the phrase ‘learning

organization’ as a catchword for whatever it is the ... front running organization

are doing. The second branch ... treats organizational learning as a research topic

Software Development as Organizational Learning

Allan Kelly Page 27 of 118

for scholars, mainly in schools of management and business.” (Argyris, 1996,

p.xix)

The two branches are not totally disparate:

“Both branches tend to pick up on ... recognzing, surfacing, critizing and

restructuring organizational theories of action (... “mental models”) ... [and]

between single and double loop learning.” (Argyris, 1996, p.xix)

Both branches of organizational learning, and the literature on knowledge

management, is rooted in Penrose’s resource based view of the firm (Pitelis, 1998).

The belief being that knowledge created through learning constitutes one of the

resources available to the organization.

As the above descriptions testify, the difficulty in defining organizational learning

illustrates the multi-facetted nature of the subject. Therefore, any attempt to analyse

a domain through this lens must also take a mutli-facetted approach.

2.4.2.1 Senge’s view of organizational learning

Despite the nebulous nature of organizational learning the field has spawned many

writers and researchers. Foremost amongst the writers is Peter Senge who has done

much to further the understanding and practice of organizational learning through

his book, The Fifth Discipline (Senge, 1990). Here Senge defines “five disciplines”

which contribute towards the art and practice of organizational learning. Shown

graphically in Figure 4 - the five disciplines are linked through the practice of

reflection:

• Personal Mastery - individual learning and exploration.

• Mental models - i.e. recognising and overcoming.

• Shared vision - the creation and importance of.

• Team learning - beyond personal mastery team learning is the building block of

organizational learning.

• Systems thinking - a call to think about the whole picture. (It is worth noting

that for Senge the term system has no technological implications.)

Taken together Senge claims these disciplines will enhance learning and reduce

learning inhibitors. Although not stated explicitly Senge’s discussion of mental

models includes the necessity of unlearning as described by Hamel and Prahalad

(1996).

Software Development as Organizational Learning

Allan Kelly Page 28 of 118

Figure 4 - Senge's five disciplines are closely related

Importantly for Senge, these “five disciplines” do not exist in isolation but should be

seen in a holistic context. Although not cited as a discipline in its own right he

advocates “reflection” as key to enabling these concepts. Reflection can be seen as

a direct application of the inquiry principle advocated by Argyris.

In fact, Senge’s work maps closely to that of Argyris:

• Personal mastery and team learning parallels Argyris’ suggestion that for

organizations to learn people must learn.

• Mental models and shared vision help highlight the values that Argyris talks

about.

• System thinking and reflection are the tools of inquiry.

Beyond Senge’s five disciplines much of his book is aimed at overcoming learning

inhibitors and enacting the disciplines.

In the context of IT there is an interesting overlap here with Willcocks’ (1997, p.

460) Nine core IS [Information Systems] capabilities:

Software Development as Organizational Learning

Allan Kelly Page 29 of 118

• Leadership and creation of shared vision is at the centre of Willcocks’ core

capabilities

• Business Systems Thinking is Willcocks’ second core capability, reporting on

case study research Willcocks notes:

“The second front office requirement is to make an IS contribution to the

top level business dialogue, ... The necessary skill was universally described

as ‘systems thinking’ ... The CIOs in the study believed that the IS function

was both the natural home and the breeding ground for systems thinking

skills.” (Willcocks, 1997, p. 486)

• Relationship building between IT/IS and business, between “techies” and “users”

is an example of Senge’s Team Learning, in this case the team is both the

technical staff and their business customers.

Despite predating Senge by some 20 years Weinberg (1998, first published 1971)

vividly illustrates the same principles within the IT context. The same themes of

team working/learning, mental models, unlearning, learning inhibitors and shared

vision are clear, albeit, often, in a different language.

2.4.2.2 Practise alone is not enough

Senge’s disciplines clearly describe what we may characterise as the practice based

view. However, it is important to recognise that merely practising these disciplines

alone cannot define learning, there must be some result. The presence of such

practices is not sufficient alone to characterise organizational learning. Argyris and

Schön make the point:

“the attribution of organizational learning is contingent on the presence of an

observable change in behaviour”(Argyris, 1996, p.33)

Argyris and Schön point out that a change in behaviour does not necessarily imply

that learning has occurred, but an observable change in behaviour is an a prior

requirement for identifying learning in action. We may characterise the results of

organizational learning as the results based view.

Software Development as Organizational Learning

Allan Kelly Page 30 of 118

Figure 5 - Two views of organizational learning

The failure to act on information has been characterised as the Knowing Doing Gap

by Pfeffer and Sutton (2000) who suggest that company culture and support are

necessary is companies are to be able to “put knowledge into action.”

2.4.2.3 Reconciling learning and knowledge

By making organizational learning contingent on behaviour change Argyris and

Schön are attributing a sense of action to learning. This has parallels in the writings

Nonaka who suggests:

“knowledge, unlike information, is about action. It is always knowledge ‘to

some end’.” (Nonaka, 1995, p. 42)

To be sure, Nonaka accepts that knowledge creation rests on learning:

“From our viewpoint, the creation of knowledge certainly involves interaction

between these two kinds of learning, which forms a kind of dynamic spiral.”

(Nonaka, 1995, p.44)

The “two kinds of learning” described by Nonaka are Argyris’ single and double

loop learning (Argyris, 1996). It seems that the gap between Nonaka’s knowledge

creating company and proponents of organizational learning is actually a difference

of emphasis.

For example Nonaka’s description of the development of the Mitsushita Home

Baker bread making machine (Nonaka, 1995, p.95-123) is described as a knowledge

creation exercise. The same example could be read as a case study of a community

of practice (Brown, 1991) and the application of single and double loop learning.

Software Development as Organizational Learning

Allan Kelly Page 31 of 118

We therefore suggest that in looking for the results of organizational learning we are

in fact looking for the creation of knowledge. That is, an organization that is

actively learning, is creating knowledge. Importantly, we place an emphasis on

action resulting from the learning process and from the knowledge creation.

This is driven by a process of active inquiry which Argyris and Schön (1996, p.11)

suggest underpins organizational learning, it is this inquiry process that generates

knowledge. They go on to identify three type of inquiry which for them constitute

organizational learning (p.20):

1. Organizational inquiry: learning aimed at improving the performance of the

organization.

2. Inquiry aimed at redefining what it means to succeed and improve performance.

3. Inquiry aimed at enhancing the ability to practice the first two forms of enquiry.

Clearly, Argyris sees item 1 as an instance of single loop learning whereby an

individual or organization improves its process through learning what works, and

what doesn’t. Items 2 and 3 meanwhile are example of double loop learning in

which an individual or organization attempts to improve its learning process, this

can lead to questioning values and assumptions which underlay the learning cycle.

Edberg and Olfman (2001) use the terms exploitation and exploration to describe

single and double loop learning respectively. Single loop exploitation allows the

organization to leverage what it already knows, while through double loop

exploration the organization is able to generate more knowledge.

We can now reconcile the knowledge view of Nonaka with the learning view of

Argyris. Figure 6 shows graphically how single and double loop learning, driven

by inquiry produce a learning process, the result of which is knowledge creation.

Software Development as Organizational Learning

Allan Kelly Page 32 of 118

Figure 6 - Reconciling organizational learning and knowledge creation

However, even using this model, and taking Cusumano’s pragmatic view there is

still a need to identify the practices and results of organizational learning. Figure 6

is therefore incomplete, there is a need to include the practices and inhibitors of

organizational learning.

2.4.2.4 Learning inhibitors

So far we have taken an active view of organizational learning, that is, how it

occurs. Yet there is a second aspect, identifying why it fails to occur. Both Senge

(1990) and Argyris (1994) discuss why organizations fail to learn - and by fail to

change and adapt. For, Argyris these are defences to learning, while for Senge these

are “learning disabilities”. In either case it is clear that in many instances

organizations fail to diagnose true problems or, even when the problem is know, fail

to act on the information.

We may see two kinds of learning failure. Firstly organizations may simply fail to

learn, that is, fail to recognise and act on a issue, or fail to see how a process may be

improved. Often this is because there is no feedback and no opportunity to create a

learning loop. Secondly, individuals or teams within an organization may know how

Software Development as Organizational Learning

Allan Kelly Page 33 of 118

to rectify a failure, or how to improve a process but do not act on this information,

i.e., the behaviour change noted by Argyris does not occur, creating Pfeffer and

Suttons Knowing-Doing Gap.

Argyris defined organizational defences as:

“a policy, practice, or action that prevents the participants (at any level of any

organization) from experiencing embarrassment or threat, and at the same time,

prevents them from discovering the causes of the embarrassment or threat.”

(Argyris, 1994, p.2)

Argyris goes on to discuss various forms of defences, including managers as

inhibitors. Many of these defences can be traced to individual identity defence

described in section 2.4.4.

The role of managers, in facilitating learning, and in inhibiting learning is a

common one in the literature of organizational learning and knowledge

management. In Nonaka’s model middle managers are “at the very centre of

knowledge management” (1995, p.124) and goes on to redefine middle managers as

“knowledge engineers” (1995, p.151).

Senge is equally forthright on the role of managers:

“Learning organizations demand a new view of leadership” (1990, p.339).

This new view sees managers as designers, and as vision creators.

“managers must redefine their job. They must give up the ‘old dogma of

planning, organizing and controlling,’ ... managers fundamental task ... is

‘providing the enabling conditions for people to lead the most enriching lives

they can.” (Senge, 1990, p.140)

Failure of managers to see their new role may result in the destruction of knowledge

and a failure to learn. In documenting learning inhibitors, and describing how

“companies turn knowledge into action”, Pfeffer and Sutton (2000) repeatedly

emphasise the role of managers and their attitudes towards learning.

As we observed earlier, some have argued that the problem with methodologies is

that they are not applied strictly enough, or are not detailed enough. Part of the

classical role of the IT manager has been to police the methodology. Yet it is

exactly this command and control mentality which can inhibit learning. In

discussing Senge, Starkey says:

Software Development as Organizational Learning

Allan Kelly Page 34 of 118

“The key constrain, therefore, on the development of learning organizations is

management skill ... we have to overcome our obsession with control and the

notion that people are rewarded only for conforming to the rules of others rather

than developing better rules. As external locus of control is a recipe for stasis

and, in the long run, mediocrity.” (Starkey, 1996, p.263)

However, the failure of management to recognise and encourage learning does not

prevent it from happening. Brown and Duguid (1991), building on the work of Orr

(1990), describe how the failure of managers to recognise learning by a workforce

opened a gap between managers and workers. Managers believed that the company

training programmes and “dircetives” were sufficient for reps (Orr’s term) to

perform their jobs. They failed to value the skills developed by the reps, instead

they came to view some of the reps’ practices as deviant. Meanwhile, the reps felt

undervalued by managers and found company directives and instructions made their

work more difficult.

The important point is that learning will occur whether it is managed or not. Good

managers will work with the process rather inhibit.

2.4.3 The results of organizational learning

Identifying the results, the value added, of organizational learning is more

problematic than identifying the core practices. One the one hand, for authors like

Senge, the benefits are the practises themselves - these are so evidently beneficial

there is no need to elaborate. On the other hand, it is difficult to distinguish between

benefits stemming from organizational learning and benefits coming from other

business initiatives.

To be fair, organizational learning does not exist in isolation. The practises of

organizational learning, and the learning inhibitors, are embedded in the operations

of the organization.

Notwithstanding these problems, authors do attribute some outcomes to a positive

learning environment:

• Creativity and innovation are frequently linked to learning, for example:

“What characterizes innovative organizations? The answer is: they are

highly effective at learning, self-critical and committed to continuous

improvement.” (Starkey, 1996, p.126)

Software Development as Organizational Learning

Allan Kelly Page 35 of 118

• Experimentation and continuos improvement: learning is often seen as the

fundamental element in process improvement, for example the Kaizen approach

at Toyota (Delbridge, 2002, Spear, 1999). For such improvements to occur there

must be experimentation.

• Problem solving is both means of learning, and the result of learning. Brown

and Duguid (1991) describe this in the context of communities of practice.

To be sure, these results are closely entwined, one may even see them as a single

result. The common factor is: change, each of these outcomes is the result of some

change. As noted above (2.4.2.1) Argyris attributes organizational learning only

when behaviour is seen to change.

2.4.4 Considerations of identity

Individuals, groups and organizations can all be said to posses identity. Since

identity can be the basis of values, and since double loop learning may cause values

to be questioned and changed there is a need to consider the role of identity in

learning by individuals, groups and organizations. Brown and Starkey have

considered identity change resulting from organizational learning:

“the sort of organizational learning we are primarily interested in is that which

constitutes a form of identity change. Our argument is that for an organization to

learn, there must be an alteration in its participants' organizationally derived self-

images. Organizational learning evolves through modifications, additions, and

deletions of existing routines (Albert, 1992). These routines are, at least in part,

constitutive of members' collective definitions of the organization's identity

(organizational self-images) so that variation in one necessarily implies variation

in the other (Dutton & Dukerich, 1991; Gioia & Thomas, 1996; Sproull, 1981).”

(Brown, 2000, p.28)

Brown and Starkey also consider the role played by psychodynamic defences in

defending the identity through resistance to learning. Again, these arguments may

be considered at a multitude of levels from the individual, through the group or team

and up to the organization.

Rotherman and Friedman (2001) also consider the role of identity in organizational

learning but their emphasis is on conflict:

“Rather than being an obstacle to learning, conflict offer opportunities for

engaging in learning. Double loop learning is a form of conflict resolution in

Software Development as Organizational Learning

Allan Kelly Page 36 of 118

which organizational members inquire into the reasoning behind positions they

take and the meaning of these positions for them.” (Rothman, 2001p, 582)

For Rotherman and Friedman identity conflict can drive learning:

“The analysis of these frames of conflict suggests that the identity frame may be

more relevant to organizational learning than are the resource and interest

framings because it promotes inquiry into the concerns and motivations of

organizational members and learning.” (Rothman, 2001, p.582)

In highlighting the role of conflict Rotherman and Friedman are, as they openly

state, extending the work of Senge, Argyris and others.

Although the two pairs of authors may highlight different aspects of identity their

works are complementary in nature:

“Individual and organizational concepts of self are maintained by a variety of

defenses that are engaged in order to avoid psychic pain and discomfort, allay or

prevent anxiety, resolve conflicts, and generally support and increase

selfesteem.” (Brown, 2000, p.28)

The defences which interest Brown and Starkey function to resolve conflicts -

advocated by Rothman and Friedman - at the expense of learning. In order to

facilitate double loop learning it is necessary to overcome these defences and allow

change to occur.

2.4.5 Software development as planning

It is possible to consider the successive stages of software development as process

of planning, each stage represents a refinement on the previous stage. Each stage

results in a more detailed plan than the previous stage.

We can reconsider the classical development methodology as a sequence of more

detailed plans. First the project is defined, the feasibility study will add enough

additional detail to decide if the project is doable. Assuming it is doable, a detailed

analysis and system design will add extra layers of planning, so that the overall

architecture of the system is laid out. The program code represents the most

detailed plan possible as it is designed to execute the plan. Any omissions or errors

in the plan will be revealed when the program runs.

The value of up-front planning is made strongly, and repeatedly, in the classical

literature such as Pressman:

Software Development as Organizational Learning

Allan Kelly Page 37 of 118

“Myth: project requirements change constantly, but change can easily be

accommodated because software is flexible.

Reality: It is true that software requirements do change, but the impact of change

varies with the time it is introduced. If serious attention is given to up front

definition, early requests for change can be accommodated easily.” (Pressman,

1997)

It is widely recognised that requirements change:

“Stable requirements are the holy grail of software development. ... On a typical

project, however, the customer can’t reliably describe what is needed before the

code is written.” (McConnell, 1993, p.30)

But authors advocate a view that it can be done right first time

 “Studies over the last 15 years have proved conclusively that it pays to do things

right first time. Unnecessary changes are expensive.

Data from TRW shows that a change in early stages of a project, in requirements

or architecture, costs 50 to 200 times less than the same change later in the

construction or maintenance. (Boehm, 1988)

Studies at IBM have shown the same thing.” (McConnell, 1993, p.25)

For Pressman and McConnell the point of planning is to minimise change even

though they accept that change will occur. The underlying assumption is that if

change can be identified and limited all will be well. This relies on accurate

planning and restricts experimentation and opportunities for learning.

A different view is taken by de Geus (1996) who suggests that planning exists in

order to understand the future and incorporate change. Under this understanding

change and the unforeseen are accepted, the purpose of plans is to explore how we

may handle a range of events or requests. The objective is for the people in the

process to learn.

The difference of opinion is highlighted when we look the stated objectives of

planning:

 “The objective of planning is to provide a framework that enables the manager

to make reasonable estimates of resources, costs and schedule.” (Pressman,

1997, p.112)

However, for de Geus:

Software Development as Organizational Learning

Allan Kelly Page 38 of 118

“So the real purpose of effective planning is not to make plans but to change the

microcosm, the mental models these decision makers carry in their heads.” (de

Geus, 1996, p.94)

Building on de Geus’ work, Schwartz describes scenario planning:

“Scenarios are not predictions. It is simply not possible to predict the future with

any certainty.” (Schwartz, 1991, p. 6)

While hard project planning may, or may not, be applicable when dealing with well

known domains of activity, we can see that all three domains of activity (process,

application and solution) in software development are constantly evolving. This

suggests that the somewhat softer approach of planning as learning may be more

applicable. Even so, Schwartz suggests why managers prefer the hard approach

advocated by Pressman and McConnell:

“Often, managers prefer the illusion of certainty to understanding of risks and

realities. If the forecaster fails in his task, how can the manager be blamed?”

(Schwartz, 1991, p.6)

This is uncannily like Middleton’s conclusion when examining the highly planned

world of SSADM methodology:

 “SSADM offers political protection to Civil Servants, should projects go

wrong.” (Middleton, 2000, p.97).

2.4.6 What organizational learning practices are important in

software development?

Building on the work documented above and processes advocated from the software

engineering community it is possible to identify several practices which may be

performed in a software development setting to enhance learning. These are

described below, while Figure 7 adds these practices and inhibitors to the earlier

model of combining knowledge creation with learning.

Software Development as Organizational Learning

Allan Kelly Page 39 of 118

Figure 7 - Practices and inhibitors to learning and knowledge creation

2.4.6.1 Inquiry

The concept of inquiry is central to Argyris’ definition of organizational learning,

while all the practices outlined by Argyris, Senge and others may be defined in

broad terms to constitute inquiry. Each one of the practices illustrated in Figure 7

contributes towards the practice of inquiry. It is possible to define each practice as

an example of inquiry, although it is more illuminating to define each in its own

right.

2.4.6.2 Reflection

The practice of reflection, as advocated by Senge, is the most direct explicit

example of inquiry. Senge builds his model of reflection on Argyris “action

science” principles:

“Skills of reflection concern slowing down our own thinking processes so that

we can become aware of how we form our mental models and the ways they

influence our actions. Inquiry skills concern how we operate in face-to-face

Software Development as Organizational Learning

Allan Kelly Page 40 of 118

interactions with others, especially in dealing with complex and conflicting

issues.” (Senge, 1990, p.191)

There are several well-known practices in software development which may be seen

as opportunities for reflection. For example, walkthroughs and code reviews

(McConnell, 1993), project post-mortems/retrospectives/reviews (Cockburn, 2002)

and the recent, albeit controversial practice of pair-programming (Beck, 2000,

Coplien, 2003). However, most of these practices seem to be aimed at single loop

learning.

Except for these specific examples the practice of reflection is notably absent in

most of the literature examined. Notably, some of the more recent works (e.g.

Cockburn, 2002, Eckstein, 2003) are starting to discuss reflection in its own right,

while Louridas and Loucoploulas have suggest reflection can complement

traditional design processes (Louridas, 2000).

2.4.6.3 Communication

When more than one person works on any project there is a need for

communication. Where projects are technically complex, as they frequently are in

software development, then the need for clear communication is greater; this is

explicitly recognised by Pressman (1997, p.861). However, while classical

literature such as Pressman focus on the means of communication and how

technology can help resolve the problem, Senge would place the emphasis on

communication between individuals as an enabler of team inquiry to take place.

The practice of inquiry and team working demands open communication. It would

be impossible to practise team work, vision sharing and dialogue as advocated by

Senge without open communication. Willcocks (1997) too has identified

communication and dialogue as important in the realm of IT, but it is only recently

that writers on software development (e.g. Cockburn, 2002, Eckstein, 2003) have

placed greater emphasis on communication:

“It seems to be a fact, that nearly no project fails because of the usage of a

specific technology, tool or the like. The main reason for project failure is almost

always the missing or not functioning communication.” (Eckstein, 2003, p.22)

Similar comments are made by DeMarco and Lister:

“The major problems of our work are no much technical as sociological in

nature.” (DeMarco, 1987, p.4)

And later:

Software Development as Organizational Learning

Allan Kelly Page 41 of 118

“The [software] business we’re in is more sociological than technological, more

dependent on workers ability to communicate with each other than communicate

with machines.” (DeMarco, 1987, p.103)

There are at least three audiences for communication during software development,

in each case the communication is aimed at inquiry:

• Intra-team communication: between members of the development team. Here

the inquiry should facilitate greater understanding and learning about the

solution domain and the process domain.

• Extra-team communication: between members of the development team and

their customers (i.e. end users and project sponsors). At a minimalist level this

will serve to enhance the developers understanding of the application domain as

they inquire into the problem.

Ang (1997) noted this type of inquiry may also result in learning by the user; this

may be an occasion for the user to reflect on their own practices and surface

mental models and assumptions not previously expressed.

In addition, extra-team communication will also occur were team members need

to communicate with project sponsors, e.g. senior managers from outside the

team. These different groups may demand different things from the developer,

e.g. the customer may want more features while a manager wants a lower cost.

This paradox has been explored by Howcroft and Wilson (2003) who consider

the “two headed Janus” developer.

• Inter-team communication: on large projects were more than one development

team is engaged there will be cause for inter-team inquiry to co-ordinate the

teams. This can also be a source of conflicting demands as different teams have

different priorities, requirements and processes.

2.4.6.4 Vision

The role of vision setting is explored by Senge who values its motivational

attributes:

“Where there is a genuine vision (as oppose to the all-too-familiar ‘vision

statement’), people excel and learn, not because they are told to, but because they

want to.” (Senge, 1990, p.9)

According to Conklin (1996), building of a shared vision was a key element of

Enrollment Management. Using this model Digital Equipment Corporation (usually

Software Development as Organizational Learning

Allan Kelly Page 42 of 118

referred to as “DEC” or “Digital”) successfully developed and delivered on

schedule, the Alpha AXP project - a combined hardware and software project

involving over two thousand engineers for several years:

“The program office uses vision to enroll the related groups in the goals of the

program. ... [this] is most effective when it expresses the program’s vision in the

terms and language of the group being enrolled.” (Conklin, 1996, p.55)

In an echo of Senge’s words “because they want to”, Conklin describes the power of

vision:

“given the group’s commitment to the larger result, we found more aggressive

behaviour. For example, the OpenVMS AXP group publicly committed to their

target schedule and stated, ‘We don’t know how to achieve this, but we commit

to finding a way’.” (Conklin, 1996, p.59)

The vision is the motivation for the inquiry activities. However, the vision itself is

also subject to inquiry but it serves to focus the inquiry towards some end.

2.4.6.5 Team work

Within the software development literature there is an keen awareness of the need

for team work. Indeed, Ince and Andrews (1990) have written:

“In 1968 the power of computers had increased to such an extent that

programming was no longer a solo exercise. In the early 1980s the problem

repeated itself but now it was microcomputers ... The evidence points to two

main problems in software development: organizing a team of people to build a

system, and actually knowing what that system is.” (Ince, 1990, p.2)

Having identified team work as a problem the rest of the book concentrates on

“technical fixes” with no further reference to team work. Similarly, other standard

texts pay scant attention to the subject. Pressman’s 800 page 1994 edition hardly

mentions group working, the term “team” fails to be included in the index. The

1997 edition devotes a handful of pages to the subject but describes team

organization in terms of management decisions based on quantifiable options.

Somerville - another standard text - is slightly better, recognising:

“Most professional software is developed by project teams ranging in size from

two to several hundred people.” (Somerville, 2001, p.497)

Software Development as Organizational Learning

Allan Kelly Page 43 of 118

In fact Somerville devote a whole chapter (20 pages) to “managing people”

including six pages to the subject of group working - albeit six pages in a 700 page

book which is mostly concerned with technical issues.

Conversely, teams and communities take a central place in the literature on

organizational learning. Not only does Senge talk about team learning but Brown

and Duguid (1991) describe communities of practice, likewise McDermott (1999)

advocates the development of knowledge communities.

Weinberg has discussed the need for software teams to develop themselves as well

as products:

“I now interpret ‘work requirement’ more broadly, to include the development of

capability in the team and team members. Over the years I’ve observed that the

requirement to develop capability cannot be adequately met by a single person.

We learn much faster and much better with the active co-operation of others.”

(Weinberg, 1998, p.5.i)

Team working is a catalyst to inquiry. It allows problems beyond one individual’s

abilities to be tackled, and allows other problems to be tackled more efficiently. By

advocating that teams inquire into their own capabilities Weinberg is calling for

double loop learning.

2.4.6.6 Leadership

We have already discussed the role of leader as learning facilitator or inhibitor.

Leaders also have a key role to play in the inquiry process by creation of a shared

vision, establishment of a communicating, teambuilding and facilitating reflection.

Senge’s new view of leadership (section 2.4.2.4) calls for leaders to be teachers,

designers and stewards, while Kolb highlights the need for managers to learn too:

“Today’s highly successful manager or administrator is distinguished not so

much by any single set of knowledge or skills but by the ability to adapt to and

master the changing demand of his or her job and career - by the ability to learn.”

(Kolb, 1996, p.270)

Frequently software development teams have distributed leadership. It is not

uncommon to find the project manager, team leader and system architect are three

different people. This provides an opportunity for conflict of values and vision.

Software Development as Organizational Learning

Allan Kelly Page 44 of 118

2.4.6.7 Inhibitors

The review to date has identified a number of potential inhibitors to learning. It is

useful to summarise these for clarity:

• Compartmentalisation of the development process blocking feedback.

• Existence of mental models which portray an unrealistic view of the

development process.

• Defences, possibly linked to identity, by individuals and teams which prevent

change and learning.

• Distributed leadership.

• Failure to unlearn existing mental models.

• Failure to act on known best practice.

• Poor communication.

Each of these inhibitors has the power to block the inquiry process and halt the

learning processes, or restrict its full potential.

There also arises a process Argyris describes as camouflage (1977, p.114) were

single loop learning produces a solution to a problem, however, the solution

addresses the symptoms rather than the underlying problem, because the solution is

now in place the actual problem is more difficult to diagnose. Senge describes the

same issue as “shifting the burden” (1990, p.104).

2.4.7 Where to look for learning

Section 2.2 identified three different domains of considerations in software

development. Although we would expect learning to occur across all domains it is

worth considering the different forms learning will take in each.

2.4.7.1 Learning within the solution domain

The solution domain is concerned with the technology applied by developers to

create a system. In order to be able to use this technology it is necessary for

developers to learn the technology. This may occur through formalised training

courses, books and self study or through socialisation and use of the technology -

Brown and Duguid (1991) would call former canonical learning and the latter non-

canonical learning.

Software Development as Organizational Learning

Allan Kelly Page 45 of 118

As has already been noted, the pace of change and introduction of new technologies

makes learning essential in this domain.

It is also necessary for developers to learn about the technology being developed for

any particular application domain. In the first case there is a need for innovation as

developers create the solution, secondly, as new developers join the team they need

to learn what the original developers have created. There is a need for a shared

understanding of what the development is. This has led Holt (2001) to suggest that

software architecture is an example of a shared mental model.

2.4.7.2 Learning within the application domain

There are multiple examples of learning within the application domain. In the first

instance software developers need to learn about the business need for software.

Classically, this is done through a process of performing system analysis and

writing a system specification. However, as we have already observed, as later

stages of the system are developed this understanding will change as developers

gain new insights. Fitzgerald points out:

“methodologies [do not] allow for the learning experience and greater problem

[application] domain knowledge that developers gain over time ... an idealised

approach to system development as portrayed in a methodology may be seriously

flawed since it omits the fact that failure is essential to human learning”

(Fitzgerald, 1994)

As noted, it is not only developers who learn about the application domain. Ang et

al (1997), suggested that the process may produce learning by the end-

user/customers who are being studied for the specification.

Once a system is deployed there is occasion for users to learn how to use the

system. Again, Ang et al have looked at this process and suggested there is a need

for the organization as a whole to learn how to deploy the system to obtain the full

benefit. Organizations which do not appreciate these diverse aspects may result in

the system being considered a failure.

2.4.7.3 Learning within the process domain

As we have already seen, the classical view holds that without a strong process,

methodology, software development may descend into simply “hacking” or

“Mongolian Hordes”.

Software Development as Organizational Learning

Allan Kelly Page 46 of 118

However, we have also seen that by following a methodology developers can suffer

from goal displacement. The methodology acts as a social defence which inhibits

learning and becomes an end in itself, rather than a means to the end.

Rigorous use of the methodology may appear to solve problems, however, it is

possible for methodology to act as camouflage, hiding the real issues. For example,

change requests may be forced through a defined accept/reject process that may

appear to reduce the number of requests but is actually stifling further learning by

users.

2.5 Summary of literature review

The classical software development literature, based on methodological explanation

offers a view of the process which while useful does not accurately reflect what

actually happens during software development.

An alternative view of software development is offered in the literature of

organizational learning. Indeed, writings about software development from the

early 1970’s (e.g. Brooks and Weinberg) can today be interpreted within the context

of organizational learning.

This raises the prospect that organizational learning offers a better lens through

which to describe software development than the classical literature. The question

becomes: can we understand the development process through this lens? In effect,

we are contrasting the technology based description against a social based

description.

In order to explore this question more fully a framework of understanding is needed

which will (a) offer improved understanding of the process, (b) highlight differences

between the literature and practice.

2.6 A framework for exploring learning in software

development

The work of Argyris can be grouped into three broad areas: single loop learning,

double loop learning and learning inhibitors (Argyris, 1977, Argyris, 1994, Argyris,

1996). It is possible to view the practices advocated by Senge as examples of how

to engage in single and double loop learning, and over coming defences against

learning.

Software Development as Organizational Learning

Allan Kelly Page 47 of 118

Building on Coplien (1999) we have been able to divide the software development

environment into three domains: application domain, solution domain and process

domain. In each of these domains there is a role for learning.

It is possible to combine these two models by asking what learning (or defences)

occur in each domain? For example, we may consider:

• How writing a program specification helps a software developer understand the

requirements.

i.e. the role of single loop learning in the application domain.

• How the writing a program causes developers to question the required

specification.

i.e. the role of double loop learning in the solution domain.

• How adherence to methodology can inhibit an effective development process.

i.e. how a mental model is used as a defence against learning and improvement.

Continuing this process, it is possible to produce the grid framework shown in Table

1.

 Single loop

learning

Double loop

learning

Learning

inhibitors

Application

domain

Solution domain

Process domain

Table 1 - Framework for identifying learning in domains of software

development

While useful for analysis this table risks falling into the same trap as the

methodologies discussed before, that is, a belief that the field may be subdivided

into smaller elements of analysis. To offset this it is necessary to add several

questions to this table. These questions (Table 2) are designed to investigate the

over-arching themes of vision, systems thinking, and team based

learning/communities of practice that may be present.

Software Development as Organizational Learning

Allan Kelly Page 48 of 118

4. Is there a clearly articulated, coherent, vision?

5. To what degree are team members aware of the “bigger picture” of the

development?

6. Is team learning present?

7. Is there evidence of reflective inquiry?

8. What is the role of managers? Methodology police or learning facilitators?

9. What is the role of planning?

Table 2 - Framework questions for identifying learning in the overall software

development process

Software Development as Organizational Learning

Allan Kelly Page 49 of 118

3 Objectives and research methodology

3.1 Objectives

The objective of this research is to answer the research question:

“What insights can organizational learning offer into software development?”

This question contains two sub-objectives:

• To illuminate the software development process as a learning centred activity.

• To suggest ways in which software development may be improved through the

application of organizational learning principles.

In answering the questions we need to create a new view of software development

to contrast with the classical description.

3.2 Methodology

The literature review has described classical approaches to software development,

the principles underlying organizational learning and shown that these principals

may be, indeed have been, applied to software development in contrast to the

classical approach. Finally, the review also presented a framework for considering

these issues.

Through a cross sectional study comprising interviews with software developers and

managers it is hoped to show how organizational learning occurs during software

development. It is hoped that analysis of these case studies through the lens of

organizational learning theory will (a) prove the applicability of these theories to the

field, (b) identify opportunities to improve the process and (c) highlight areas for

further research.

Since organizational learning is not the dominant paradigm within software

development it is felt necessary to use qualitative studies to explore the domain

rather than quantitative studies. Inevitably, such studies will represent cross-

sections of practice at a moment in time.

3.2.1 Data collection and sources

Collection of data has been undertaken using a site visits and face to face interviews

with members of a software development group within the organizations concerned.

Interviews were semi-structured, firstly interviewees were asked basic

Software Development as Organizational Learning

Allan Kelly Page 50 of 118

administrative questions to ascertain the scope of the development activity within

the group. Next a set of open questions were asked to determine the degree to

which a name methodology was in use. Finally, a set of open-ended questions were

used to encourage interviewees to tell stories about the development process.

Where appropriate additional questions were asked to provide deeper understanding

of issues raised.

In developing and deploying software systems there are three generic models used

by organizations: in house development of systems, outsourced developed by a third

party and the purchase of existing common off the shelf (COTS) software. Were

software is developed specifically for an individual business it is known as bespoke

regardless of whether it is developed in-house or externally.

Therefore, there are typically three environments, in which a software developer

may find themselves working:

• In house bespoke: Creating software for the business that employs them, e.g.

Royal Bank of Scotland, Unilever, etc.

• Out-sourced bespoke: Creating software for a single, external customers, e.g.

Accenture. (Often called a “Software house” or “Consultancy”)

• Generic development: Creating software for sale to many customers, e.g.

Microsoft. (Again may be called a “Software House”).

Data collection has drawn on a mix of these sources. While developers frequently

switch between these different types of companies the demands placed on them can

be quite different.

Interviews typically lasted less than an hour. Once complete the interviews were

transcribed by the researcher before analysis. On some occasions post-interview

conversations added further insights into the subject matter after the tape was

stopped, where appropriate these comments were noted at the end of the transcript.

Once the transcript was complete it was analysed for themes consistent with the

framework outlined in the literature review. As noted in the literature review,

organizational learning is a multi-facetted discipline, it was felt appropriate to note

as many concepts as possible as these may provide avenues of further research.

The analysis was continued by way of a written paper. This was structured into

three sections: how, within our framework, the subject matter could be explained,

how classical software engineering texts may explain the projects, and a discussion

section.

Software Development as Organizational Learning

Allan Kelly Page 51 of 118

The transcripts and analysis are omitted from this paper but may be available from

the author or his web-site in the near future.

3.2.2 Limitations of research

All interviews are drawn from the commercial business environment, while this

environment represents the bulk of software development activity it does not

represent the sole environment. It is hoped that the findings will generalise to all

types of software development.

A second limitation on the case studies is that of commercial confidentiality. Some

avenues were off limits to this research and it has been necessary to obscure the

identities of the organizations concerned. Every care has been taken to ensure no

substantive material has been omitted by these restrictions.

By their very nature the interviews were retrospective and personal. Where details

were not offered there was limited opportunity to gather them from alternative

sources, or observe how the events actually played out.

Since these were personal accounts interviewees inevitably offered their

interpretation of events. The interviewees had already filtered the information

received and used their own sense making process to understand and communicate

the events. Where alternative sources were available some of the events recounted

may have been interpreted differently.

Three of the five interviews were with former employees of the organizations

described. In part this was a deliberate decision since it was felt former employees

may discuss their projects more freely. In the case of Supply Chain Systems this

was an act of historical necessity in order to gain an insight into an organization

operating during the “dot.com” boom in Silicon Valley. While interviewing former

employees could bias the research none of the subjects exhibited particularly bad

feelings towards their employer.

Due to time constraints it was not possible to perform longitudinal studies with

those interviewees involved in on going projects. This limits the opportunity to test

some of the points made by advocates of process methodology and organizational

learning.

These limitations were partially offset by interviewing a number of different

individuals from different backgrounds. While each case exhibited its own

collection of events, stories and interpretations common themes could still be

identified.

Software Development as Organizational Learning

Allan Kelly Page 52 of 118

However, one possible source of bias in reporting should be noted. Several of the

interviewees, although not all, were contacted through a professional software

developers group. Since these interviewees subscribe to the same publications and

electronic mailing lists and may attend the same conferences it is possible that a

group bias could be reflected in the research.

On the other hand, involvement with such a body may also indicate that the

interview subjects are more aware of the issues involved in software development.

In particular, membership of the said body could also be interpreted as indicating

that these individuals already have a bias towards learning.

On balance, it is felt that participation in the organization concerned would not

unduly bias the exploratory nature of the interviews.

Another similarity in the interviews concerns the application domains. Of the five

subjects three are involved with supply chain software developments. Again this

could introduce bias into the study although given other differences (e.g. location

and company size) between the three this is felt unlikely.

3.2.3 Framework for exploring

The questions were based on the framework suggested by the literature review -

section 2.6. Appendix A shows the questionnaire guide used for the interviews.

Software Development as Organizational Learning

Allan Kelly Page 53 of 118

4 Research

4.1 Overview

A summary of the individuals and organizations investigated is contained in Table

3. All interviews occurred between July 2003 and August 2003 inclusive.

The semi-structured nature of the interviews allowed each interviewee to tell their

own story of a software development effort. For the three interviewees who were

no longer employed by the organizations concerned the story view was evident in

their telling. Each story had its own, very clear, theme.

Interviewee Company Description

Jenny Warehouse

Software

A dedicated software company developing systems

for warehouses and logistics.

A story of chaos, and the failure of senior

management to understand or engage with software

development.

Tom Hedge Fund

Inc

A software development group supporting an Anglo-

American hedge fund.

A story of identity, an organization asserting its

independence from the parent and in doing so

bringing its Chicago and London offices into

destructive conflict.

David Bulk Mailing A software development group developing

applications for a mass marketing company.

Another story of identity, software developers

within a printing business assert their identity as IT

people resulting in constructive conflict between

technology and business.

Alistair Supply Chain

Systems

A Silicon Valley start-up developing online supply

chain market tools.

A story of vision and identity, a high-performing

team arrive to save a floundering company and

Software Development as Organizational Learning

Allan Kelly Page 54 of 118

change the world.

Jack Transport

Corp.

The UK software application development group of a

well know global transport and logistics company.

A story of classical software, a chaotic development

group is saved by the application of methodology and

process.

Table 3 - Summary of individuals and companies investigated

By the very nature of qualitative research it is not possible to foresee the issues

which will be raised by research subjects. This was undoubtedly true in this case,

while some subjects chose to focus closely on the development process (e.g. David

at Bulk Mailing) others chose to discuss the wider business environment (e.g.

Alistair at Supply Chain Systems.) Both are equally legitimate points of view and

highlight the large diverse nature of software development.

4.2 Interview thumbnails

4.2.1 Warehouse Software

Warehouse Software develops bespoke warehouse and logistics systems for

organizations throughout the UK. This small to mid-sized company employs its

own sales force, business analysts and software developers to develop specialist

warehouse and logistics systems designed for customers specific requirements.

Although the company has a history of developing systems over a number of years

the project discussed with Jenny suffered a number of major problems best

characterised as a complete failure of management. The project was subject to

frequent personnel changes - a result of the senior management’s decision to operate

a resource pool from which staff could be assigned to the project for a few weeks or

a few months and returned to the pool, or another project, at any time.

The individuals responsible for management and leadership of the project failed in

their roles. Although senior management was alerted to this fact on several

occasions they failed to correct the situation. One rear intervention by management

was to stop a senior developer when he started to fill the void and assume the

leadership role.

Software Development as Organizational Learning

Allan Kelly Page 55 of 118

Although the project team agreed a development process before the project

commenced, this was never documented and remained a cultural entity. As

personnel were rotated on and off the project the process became less well defined.

The project experienced what has been characterised as a “requirements explosion”

with frequently changing requirements coming from the customer and generated by

the development process itself. This made efforts to create a stable technical design

and perform planning difficult or impossible.

Customers and users were separated from the development team physically and

organizationally. Communication of requirements was handled through business

analysts who were responsible for passing requirements and changed from users to

developers as documents. Again, these analysts were subject to personnel changes.

Jenny, a software designer, clearly identified a failure to capture the requirements up

front as a key failing on the project that resulted in this explosion. She also

identified unrealistic deadlines as another cause of failure, deadlines that the project

usually missed.

The project seems to have lacked leadership and a clear sense of direction, staff

were demotivated and knew they would shortly be moved off the project. This

situation seems to have been accepted and the project allowed to continue

floundering, and failing, without any serious efforts by management to improve the

situation.

4.2.2 Hedge Fund Inc

Tom was the deputy head of IT in London at a Hedge Fund subsidiary of a major

investment bank. Software development was split between London and Chicago

and was primary concerned with supporting traders. Most of the development

function was concerned with rapidly producing “prototypes” for the traders to use.

Developers would work closely with traders on short projects. These projects might

be initiated by traders themselves or through senior management.

The development of these small projects was quite successful but when the fund

decided to develop a new equity risk management system problems set in.

Although the fund already had such a system this had been inherited from the parent

company which still controlled elements of the system. The original designer of the

system was now employed by the fund and it was he who led the development of

the new system.

Software Development as Organizational Learning

Allan Kelly Page 56 of 118

The new system was developed in Chicago, drawing on the existing system and the

traders’ knowledge. The system was seen a success and it was decided to roll it out

in London, this is where problem started.

Although the traders in London were engaged in the same role as their counterparts

in Chicago their methods of working were quite different. The developers in

Chicago had made assumptions based on the US market and US ways of working

which were not applicable to the London market, e.g. the system only supported

dollar pricing.

The IT department in London made a series of change requests to the developers but

these were either not enacted or enacted slowly. Meanwhile, the developers

continued to add features and functionality for the Chicago operation.

This situation persisted, the more the system was seen as a success in Chicago the

more the senior management wanted the system in London, but in London the

system was seen as a failure and the traders wanted their old system back. Each

time the Chicago developers added a new feature, or failed to enact a change request

from London the view of failure was compounded.

Finally, the deadlock was broken by the cutbacks in the banking sector after

September 2001. The Chicago traders kept the new system while London was

allowed to use the old system.

4.2.3 Bulk Mailing

David is a developer with Bulk Mailing, an established firm specialising in the

printing and posting of mass mailings. David leads a team of three, who are

developing a new data processing system that allows the firm to receive data from

customers and produce the mailings. Although the system is still being

development it is slowly replacing an existing system based on older technology.

In general Bulk Mailing has little interest in IT. David’s project is unusual and

reports to a manager who is responsible for two production centres. Even so, David

is keen to define himself as a software developer and looks forward to working for a

real software company, one dedicated to producing software alone.

The project is vaguely defined, although its objective is to replace the existing

system this is far from a systematic process. New developments come from three

sources: suggestions, ideas and insights provided by the manager in charge of the

process, end user comments and the developer themselves. While the first two

Software Development as Organizational Learning

Allan Kelly Page 57 of 118

sources are driven by the business the developers seek to apply new technologies to

the project, although, only when there is a justifiable case.

There is some resistance in the company from users of the old system who feel they

are being deskilled. However, part of the reason the company wishes to replace this

system is the difficulty it has in recruiting these skills.

The manager of the project is not familiar with the IT being applied by David’s

team, this is a source of tension for David who feels the manager is constantly

setting unattainable deadlines. Although, the manager’s unfamiliarity also means

he leaves David and his developers much latitude in how they work and design their

technical solutions.

Design and development is centred on a democratic dialogue process whereby

David and his team discuss solutions and make ad hoc notes of the decisions rather

than formal documents and design diagrams. There is much reworking

(“refactoring”) of existing work as better solutions become clear, or time permits

“kludged” code to be improved.

David is keen to learn new technologies and development techniques, not just for

himself but for his team too. All three developers seem to a similar skill level to

him. When required (and finances allow) they engage outside consultants to assist

them with new and more complex technologies.

At the time of the interview the team were completing a major piece of work which

has improved the company’s competitive position relative to its competitors. While

the team now want to spend some time improving the existing system (refactoring

code, removing bugs, improving stability) there is tension with the manager who

wants the team to add more new features as soon as possible.

4.2.4 Supply Chain Systems

Supply Chain System was a Silicon Valley based start-up during the 1998-2001

“dot.com” boom period. The company hoped to provide an online mechanism for

tracking capital flows as goods moved through the supply chain. This was part of a

bigger objective to create a tradable market in working capital debt.

The company first developed a large Oracle based system for its purposes.

However, it was found difficult to adapt this system as new customers were added;

the system was unable to cope with the massive variance in supply chains used by

different organizations.

Software Development as Organizational Learning

Allan Kelly Page 58 of 118

Alistair’s line manager had already moved from his current company, Browser

Corp, to Supply Chain systems and encouraged Alistair to move. Subsequently, the

whole of Alistair’s team from Browser Corp was reassembled working for Supply

Chain where they developed a second, more flexible system that implemented a

domain specific language. Interestingly, prior to working for Supply Chain the team

members had limited knowledge of the supply chain domain.

In developing the new system Alistair encountered resistance from existing

developers. This centred on a number of technical issues that Alistair regarded as

irrelevant or even counter productive, to the work and design of his second-

generation system.

The Browser Corp team knew each other well and worked closely together. The

team had a disciplined and an unwritten process, although Alistair is clear, there was

a definite process to the development he felt that to write it down would destroy it.

The teamwork and process relied on extensive and constant communication, usually

via e-mail or instant messenger. However, the team found it difficult to integrate

new individuals into the team and to work with other teams. Eventually the existing

developers at Supply Chain left the company.

Development on the new system went well - Alistair describes it as pretty much a

perfect project - and the team saw themselves as “saving the company” but the

company had other problems beyond the new development.

The founders and original management had spent much of the initial venture capital

funding on doubtful schemes. A large part of this spending had been on outside

consultants to make the original system work. The system had been through several

revisions already and much money spent on licensing and integrating third party

solutions in an effort to make the system generic.

Eventually the company simply ran out of money; with the post-dot-com climate in

Silicon Valley new money was not forthcoming.

4.2.5 Transport Corp.

During the 1990’s the UK operations of Transport Corp won several national

awards for quality and customer service. They are the subject of several positive

case studies on continuous improvement and employee training practices.

The UK applications group develops small applications to support many internal

groups within the company and applications for external customers. Bespoke

Software Development as Organizational Learning

Allan Kelly Page 59 of 118

software is often provided to customers as part of the product offering by the sales

team.

Until two years ago the applications group was seen to be failing. Internal

customers had lost confidence with the group and would develop their own ad hoc

solutions, the group had no reliable process and could not delivery software on time,

the process was considered “chaos.”

A new manager assumed responsibility for the group and tasked the lead developer,

Jack, with rectifying the situation. He instituted a number of small-scale

modifications himself, secured funding for external training to help the group and

eventually brought in an outside consultant to assist with the change process.

The outside consultant adapted a commercial, off the self, big-M, Methodology

known as RUP to the group’s requirements. This has been in full operation for a

few months now and is yielding considerable benefits. Jack credits the process with

a turn around in the group’s working, it can now deliver software on time and within

budget.

The big-M Methodology adopted by the group contains many of the characteristics

of classical methodologies with an emphasis on process and documentation.

However, the methodology also adopts many evolutionary practices suggested by

Agile methodologies. Consequence the process provides for considerable dialogue

between customer/users, business analysts and developers. The use of iterative

development provides for early testing and customer feedback.

Jack demonstrates Senge’s Personal Mastery - without knowing it by name -

although he finds it difficult, and possibly frustrating, that other team members

remain locked in out dated mental models of the process and work. He is

successfully using new technology and software design to challenge some of their

assumptions and practices.

The group faces a number of other challenges. Their workload is set to increase,

although some work is outsourced Jack is finding it difficult to identify third party

development companies that are willing and able to work to the group standards.

While the new process has succeeded in bringing order to the previous chaos it is

too soon to tell whether the process itself is responsible for this improvement or

whether, as DeMacro and Lister would suggest, the improvement is due to

Hawthorne effect. The biggest challenge facing the group is therefore to retain the

benefits of the process.

Software Development as Organizational Learning

Allan Kelly Page 60 of 118

4.3 Use of the framework

The framework described in section 2.6 proved useful in identifying learning

practices and inhibitors. A composite summary of the major themes is given in

Table 4 and Table 5. However, this strict framework does not completely describe

the full insight offered by organizational learning.

 Single loop learning Double loop

learning

Learning inhibitors

Application domain

Jenny:

Scope of project was

defined.

BA document customer

requirements.

Detailed information

gathered on specific

areas, e.g. goods out.

Customer expanded the

domain of project1.

 Development staff are

separated from

customers.

Failure to recognise

tacit knowledge.

Goal displacement as

staff produce

specifications.

BA’s communicate by

e-mail.

Tom: Business requirements

are written.

Company enhances

view of risk

management beyond

that of parent (a

potential source of

competitive advantage.)

Features added to

system in Chicago.

London traders learn

“the system is broken.”

Managing directors

and traders, discuss

business

opportunities and IT

applications with IT

staff1.

Prototyping

solutions2.

Engaging business

staff to review/reflect

on prototypes.

Chicago developers

unaware of London

practices.

Chicago developers

assume mental models

apply to London

markets.

Chicago developers

erect defences against

criticisms from

London, do not revise

their mental models.

Goal displacement.

Software Development as Organizational Learning

Allan Kelly Page 61 of 118

London traders defend

themselves against

failure of new system.

David: Company learns AIX is

expensive, COBOL

programmers are rare.

Developers learn about

bulk mail processing.

Test bed highlights

errors for fixing.

Generalisation of

existing COBOL

system.

Manager envisages

new ways of using

technology to

improve process.

Users make change

requests.

COBOL teams are

outside the loop.

Alistair: Developers learn about

supply chains.

New system is

capable of modelling

any chain.

Management fail to

understand their

business problems.

Jack: BA’s document

customer requirements.

BA’s produce remit

and specification

with lead developer.

Customers shown

work in progress.

Some customers not

interested in progress,

Solution domain

Jenny: Document review

process.

 Review process

inoperable.

Tom: Chicago developers

learn “London is

unhappy”

Chicago developers

learn “Chicago traders

are happy”

David: Developers teach

themselves new

Developers seek

ways to exploit new

Time pressures.

Software Development as Organizational Learning

Allan Kelly Page 62 of 118

technologies.

Developers learn from

consultants.

Test bed highlights

errors for fixing.

technologies.

Developers re-work

existing solutions.

Alistair: Existing system is

adapted for each new

customer.

Consultants integrate

each customer as one off

exercise.

Developers

generalise about

supply chains.

Developers add

inheritance and

templates to new

system to make it

more flexible.

Existing developers

erect defences to new

developments.

Jack: Skills training.

Group learns to improve

work estimates.

Architecture &

technology questions

mental models.

Development

manager applies

outhousing3 practices

to internal team.

Developers resist

technology change.

Process domain

Jenny: Process is agreed before

project start.

Staff learn to avoid the

project.

 Managers believe

people are “moaning”.

Senior managers

refuse to become

involved.

Tom: Team members are

encultured into the

process.

 Mental model “lean,

agile” image for

company.

Architect controls

system, fails to

empower staff;

“second system effect”

Software Development as Organizational Learning

Allan Kelly Page 63 of 118

David: Creation of formalised

system for raising

queries.

Developers learn

manager always wants

things “now” so

deadlines become

meaningless.

 Manager has mental

model of project

management, does not

allow for more

exploration.

David believes formal

processes are better.

Alistair: Rapid

communication.

Team members know

each other, can

introduce conflict to

seed discussion.

Team has difficulty

integrating new

members and teams.

Jack: Customer do not trust

development

department.

Customer develop own

software.

Continuing to iron

“blimps and kinks in the

process.”

Customers learn

about others’

priorities.

Code reviews are

form of reflection.

Refactoring.

Mental models of

developers’ roles.

Past management

allowed “chaos.”

May come to see

process as “complete.”

Process handbook

could be a block to

change and defence.

Table 4 - Composite summary of major loop learning activities and inhibitors

found during research

1There is a negotiation and discovery process here, as business ideas are proposed,

the business and IT staff then discuss possible uses of IT to address the business

opportunity. Neither side has enough knowledge of the other domain to propose a

complete solution.

2Prototypes are used as transient objects to expose underlying mental models, tacit

requirements and cultural norms.

Software Development as Organizational Learning

Allan Kelly Page 64 of 118

3 “Outhousing” is the term used by Willcocks (1997) to described practices used by

outsourcing companies when used internally with in-house teams.

1. Is there a clearly articulated, coherent, vision?

Jenny: No - Now attempt was made to create a shared vision, instead a vision of

“unrealistic deadline” filled the void. Individuals goals and visions were not

linked to the overall objective.

Tom: Yes - “develop new equities risk management system”

David: Yes - “replace the COBOL”

Alistair: Yes - Alistair has a personal vision (architect his first large system); there is a

team vision (“save the company”) and a wider company vision (revoutionaise

the supply funding), all three visions are complementary.

Jack: There is a business vision which developers can relate to; there is a personal

vision of “quality”; but some developers resist vision.

2. To what degree are team members aware of the “bigger picture” of the

development?

Jenny: Very limited - Staff only join project after sale has been made, staff are

rotated frequently and tend to focus on specific, limited areas.

Tom: For local projects the picture is clearly visible.

For the equity system the picture in London is not as clear.

David: Very clear - system is to replace COBOL application, team can see clear

benefits to the organization.

Alistair: Completely; Alistair is able to articulate, passionately, the broad vision of the

enterprise.

Jack: Analysts and developers have clear understanding of how their work fits into

the business, how software effects the business.

3. Is team learning present?

Jenny: No - staff are changed frequently.

Software Development as Organizational Learning

Allan Kelly Page 65 of 118

Tom: Yes - both single and double loop; some is positive, some is negative.

David: Yes - development team is learning the application domain from their

manager and users, and are also engaged in enhancing their own solution

domain knowledge.

Alistair: Yes - within the development team.

Jack: Team have learned a new process, they are continuing to learn the new

process and challenge existing models.

Jack and the business analysts seem to have more “team spirit” then the

development team as a whole.

4. Is there evidence of reflective inquiry?

Jenny: No - all time is spent dealing with immediate problems.

Tom: No

David: Manager sees software being developed and this acts as a catalyst to create

new ideas the system and surface tacit knowledge.

The developers reflect on the work they have done, consider better solutions

and how new solution domain technologies may improve their application

domain products.

There is some evidence that some users are reflecting on the software

delivered and requesting improvements and modifications.

Alistair: Yes - in analysing the solution domain.

However, this is limited within the wider company.

Jack: Yes - Jack is engaged in a process of reflection and inquiry, however this is

not true of all team members.

5. What is the role of managers? Methodology police or learning

facilitators?

Jenny: Neither - management fail to manage.

Tom: Manager do not seek to enforce any methodology.

While they do not seek to facilitate learning, they are partners in the learning

process.

David: Application domain expert, project sponsor, customer.

Software Development as Organizational Learning

Allan Kelly Page 66 of 118

The manager seeks to manage the project like any other, driving his

developers to produce a working system in as short a time as possible.

Alistair: Visionary.

Jack: Senior managers are learning facilitators.

Jack is policing the new methodology and facilitating learning.

6. What is the role of planning?

Jenny: Goal displacement for manager.

Tom: Limited and conducted on an ad hoc basis.

David: Minimal formal planning through project plans and documented system

design techniques.

However, the team are actively engaged in planning, building new mental

models of how the software will operate. These are built verbally, on a white

board and using unstructured “book” documents.

Alistair: An information channel and means of exploration.

Jack: Planning, through the writing of documents is extensive. It is used as a

control mechanism to determine what to implement and create schedules.

The documents explore the requirements of customers and apply technical

knowledge to the proposal of solutions. As such they are a learning vehicle

which allows the application and solution domains to be charted.

Documents continue to evolve as the project progresses.

Table 5 - Composite summary answers to framework questions observed in

research

Software Development as Organizational Learning

Allan Kelly Page 67 of 118

5 Discussion

In the cases of Bulk Mailing and Hedge Fund Inc the business lead is clear, the

developers work for the business and are engaged to address business problems.

The case of Warehouse Software is less clear cut. The company is engaged by a

second firm to undertake work. Developers are removed from direct contact with

the end-users.

Warehouse Software are a pure software company, in effect a pure knowledge based

company. They exist to sell expertise in developing software for a specific part of

the supply chain. One would therefore expect them to have core competencies in

both the software development field and the logistics field yet they fail on both

counts.

This problem appears again, although from the other point of view at Transport

Corp where the development group is having difficulty in identifying third party

developers with whom they can work.

Like Warehouse Software, Supply Chain Systems should, and does, possess a core

competency in software development. Although their sales models differ the two

companies have much in common. Neither company would exist without software,

they both aim to sell software, albeit packaged very differently.

Each one of these companies demonstrates a conflict between business and

technology. Management of the business, management of the technology and

management of the conflict are three distinct but interlocked domains of

management. Success in one is no guarantee of success and even the definitions of

“success” and “failure” are open to question.

Figure 8 - Business and technology are in conflict

As a consequently of this conflict it becomes difficult to consider technology, in this

case software development, without also considering the business environment. To

Software Development as Organizational Learning

Allan Kelly Page 68 of 118

consider one side alone would not present a complete picture. Therefore, the

original intention of this research, to remain strictly focused on the development

process, was compromised.

This compromise was implicitly hinted at in the literature review. Many of the

reviewed papers connecting software development with organizational learning

considered learning by the organization rather than within the development team

and process.

Conversely, the literature on software development reviewed mainly concerned

itself with software development in the abstract, without a business context. And

thus ignored the conflict between business and technology.

While the remainder of this discussion section concentrates on the software

development side of this conflict - thereby offering a symmetry to the classical

development literature - the central conflict is recognised and discussed.

The conflict itself of great interest. The management of this conflict seems to be a

key differentiator between success and failure - however we may choose to define

these terms.

5.1 How does the classic view emerge?

Of the companies examined only one, Transport Corp, had a formalised

methodology as advocated by the classical literature. Indeed, this company had

recently employed a consultant to advise the development process and write a

formal methodology. The consultant had customised a big-M, branded,

Methodology - RUP from IBM. The Lead Developer credited the methodology

with an improving the development environment.

At Warehouse Software, the development team had agreed on a process, a small-m

methodology, at the start of the development. However, unlike Transport Corp, this

was not written down and was passed culturally from developer to developer. A

management policy of rotating staff on the project, and the stress of continually

changing requirements meant that this process was not rigorously followed.

None of the other three companies had a formalised methodology although they all

had a process that was repeated and passed on culturally. The development team at

Supply Chain Systems actually brought their process with them from their previous

company but the team architect felt that to codify the process would destroy it.

Software Development as Organizational Learning

Allan Kelly Page 69 of 118

Clearly, all the teams had a process, which produced software - with the possible

exception of Warehouse Software. However, the practice of formalised

methodologies as described in the classical texts was absent in all bar one case.

This leads us to conclude that a formalised methodology is not a prerequisite for

developing complex software.

Despite its absence the “pull of methodology” exerted a strong attraction on many

of the developers. When faced with a failing project at Hedge Fund Inc, Tom

believed the answer lay in a more rigorous, defined process. David at Bulk Mailing

stated that he hoped in future to work for a “software company” which would follow

a defined methodology. Of course, it is hardly surprising that developers educated

with textbooks which advocate methodology should believe that possession of a

methodology would improve their work.

There is also a clear analogy between a computer program and the claims made for

some Methodologies. A program contains a series of unambiguous steps which

when followed produce a definable results. A Methodology seems to offer a similar

set of unambiguous steps, which if followed programmatically should produce a

successful computer system.

Combined these, highly rational, models offer an idealised view of the development

process. This can act as a motivator for software developers and their managers to

aspire to. However it is questionable how successful such models are when

implemented in real life, certainly DeMarco and Lister attribute most of the benefits

observed to Hawthorne effect, although they acknowledge a marginal benefit from

convergence provided by the methodology (DeMarco, 1987, p.113-120).

Transport Corp seems to be realising a third benefit from its adoption of a

Methodology, namely that of change motivator. In adopting their Methodology

Transport Corp set out a clear vision of what they wished to achieve, since the

vision seemed rational, and appealed to developers sense of “what should be”

thereby easing the transition from a troubled process to a more defined process.

At the time of the study Transport Corp has successfully made the change and

development seemed to be better. The question now arises whether the team will

see a gradual loss of benefits as Hawthorne effect wears off, or whether the benefits

are real.

The loss of productivity would most likely take one of two forms. First, the

discipline needed to follow the Methodology may decline, individuals may start to

Software Development as Organizational Learning

Allan Kelly Page 70 of 118

miss elements of the process or take “short-cuts.” Over time the group may return

to their former state.

The second form may come from the reverse phenomenon, that over rigid adherence

to the Methodology. Developers may come to use the Methodology rules as a form

of defence to hide behind. This has been observed in other situations by DeMarco

and Lister - who label it “malicious compliance” - and by Watsell (1996) who labels

it “fetish of technique.”

If we assume that Transport Corp’s Methodology is a success, and the organization

can navigate its way between the two opposing hazards it is worth asking if any of

the other groups studied here could benefit from a classical approach to process.

Given that Alistair described Supply Chain Systems as a “near perfect project” there

seems little that a revised process could improve. Similarly, although David of Bulk

Mailing is drawn to a formal development process in reality his team is successful.

Indeed, imposition of a methodology on either of these teams may well reduce their

productivity and quality.

Hedge Fund Inc is a more complicated situation. The company successfully

develops a myriad of small systems already and considers itself a “lean and agile”

organization, the problem only lies with the large Equity Risk System. Since the

Chicago office considers this project a success it would be somewhat difficult to

persuade the developers to change from their current methods of working.

Adoption of a new Methodology could be counter productive, although some means

of convergence between London and Chicago would be useful.

At Warehouse Software the situation is more clear-cut. It would seem any kind of

process would be better than their current way of working. As at Transport Corp it

may be possible to leverage developers existing assumptions of how things should

be done to install a new way of working. Coping with Hawthorne effect would be a

minor problem compared to their existing problems.

It seems that the classical view of software development has some merits. While

some of these merits may be a self-fulfilling prophecy they can be leveraged for

benefit. However, inappropriate application of classical approaches may also be

damaging.

Unfortunately, classical literature does not provide the tools of analysis needed to

determine when, where and how, to apply the process dominant view. To be sure, a

strict interpretation of the literature almost condemns any project to failure: process

Software Development as Organizational Learning

Allan Kelly Page 71 of 118

may not exist, process may not be followed in a disciplined fashion, documentation

is not produced (for both process and product) or adequate planning is not

performed.

Therefore, there is a need for a framework that can be used to analyse software

development teams and processes to determine when to apply the classical

prescription, and when to leave well alone.

5.2 What aspects of organizational learning do we see?

This section draws directly from the Table 4 and Table 5 described in the research

section. Rather than consider all nine categories individually this section focuses on

the learning aspects across all three domains of development.

5.2.1 Single loop learning

5.2.1.1 Training and documentation

Single loop learning is much in evidence in these case studies. In its simplest form

this takes the form of technology training courses at Transport Corp. Elsewhere,

little mention was made of training courses, indeed, according to David, Bulk

Mailing were reluctant to send him and his co-workers on training courses which he

felt were required.

Where training was discussed it was focused on the solution domain - the

technology, or development process. No mention was made concerning training

about the application domain - the business. In each case developers seemed to be

expected to learn the application domain “on the job” through socialisation and

enculturement.

Three of the firms (Supply Chain Systems, Warehouse Software and Hedge Fund

Inc) essentially exist to exploit specialist knowledge. That they rely on casual

training processes and have little by way of formal knowledge passing seems

surprising at first.

Several explanations present themselves. Firstly, this may simply be oversight by

management, however, since all the companies had a similar, perhaps implicit,

policies simple oversight looks unlikely.

A second explanation seems to a belief that a project should, and will, document

what it finds in the business environment. For a rational business this should be

unnecessary, in a business operating in a textbook fashion one would expect to find

Software Development as Organizational Learning

Allan Kelly Page 72 of 118

operating manuals, documented methods of working, etc. Indeed, one would also

expect to find training programmes for new recruits.

The absence of these materials in many businesses poses problems to the software

development group. Without these basic materials to train developers, and on which

to base system designs, it is difficult to begin any development. This explanation

may also explain why classical development literature places such emphasis on

documentation.

In classical literature the answer to these problems is system analysis, requirements

analysis and documentation. In effect, the software development process provides

its own materials to boot-strap the development effort. This process provides an

interface from the supposed rational world of software development to the

apparently irrational world of real business. Consequently, a software development

project addressing a business problem could come to represent the most

authoritative codified source of information on a business.

(One could see business process reengineering (Hammer, 1994) - BPR - as a

extension of this activity. The rational world of technology attempts to push back

and rationalise, through process reengineering, the irrational world.)

Another reason for the missing process manuals and induction training may be

difficulty in producing these materials. Since much of the knowledge of an

organization is tacit and difficult to codify, businesses simply don’t bother to. It is

only when a software development project starts that there an attempt to codify this

knowledge. However, tacit knowledge is still difficult to codify and this may

explain the problem of producing stable requirements described by several of the

interviewees. Failure to recognise that much knowledge is tacit may impair efforts

to produce requirements documents.

A more radical explanation for the missing materials may be that they don’t matter,

or at least, the advantages gained by the documentation process are outweighed by

the disadvantages.

The contrast here is between Warehouse Software and Supply Chain Systems. The

former organization was experienced in developing within the application domain

and emphasised documentation. Yet neither of these two experience or

documentation seemed to provide an advantage, and indeed, may actually have

hindered the project. There is some evidence that Warehouse Software’s customer

in this case was unusual, yet developers continued to operate their existing mental

models of the application domain thereby failing to appreciate differences.

Software Development as Organizational Learning

Allan Kelly Page 73 of 118

Meanwhile, an emphasis on documents to communicate between customer, business

analyst and software developer made the transfer of tacit knowledge difficult.

Conversely, the development team at Supply Chain Systems were highly successful

despite the fact than none of the developers had a supply chain background. These

developers were unencumbered by mental models and set out to learn the new

application domain. Rather than use documentation as communication the

organization provided “domain experts” within the company with whom developers

could discuss issues with, thus the flow of tacit knowledge was unimpeded.

Finally, the very newness of the application domain to the Supply Chain Systems

developers may have acted as an additional motivator - the desire to learn about

something new by a high performing team contrasts starkly with the Warehouse

team who were repeating a previous exercise. Undoubtedly both teams were facing

new problems which required new solutions, the Supply Chain team were constantly

operating in learning mode - everything was new to them - while the Warehouse

team switched between learning/solving and repetition.

5.2.1.2 Software embeds knowledge

Single loop learning is also present when the organizations studied sought to embed

knowledge in software. Bulk Mailing understood how to remove duplicates and

“dead names” from mailing lists but this was time consuming and expensive. By

embedding this knowledge in a software program the process was brought in-house,

speeding it up and reducing costs.

Similarly, Hedge Fund Inc sought to embed their understanding of equity risk in a

computer program so the knowledge could be more widely used and potentially

form the basis of competitive advantage.

These findings support the suggestion of Edberg and Olfman that software

enhancement allows the dissemination of learning:

“The case studies in this research demonstrate practical examples of individual

learning transferred to the group through software enhancement. A contribution

from this demonstration is the concept that the learning of an individual can be

disseminated to a group through enhancements to software thus making the

process of software enhancement an act of organizational learning.” (Edberg,

2001)

Software Development as Organizational Learning

Allan Kelly Page 74 of 118

5.2.1.3 Model reinforcement - deadlines

In several instances here single loop learning was reinforcing, or even creating

negative mental models. One recurring example was that of deadlines.

Several of the interviewees reported how deadlines were frequently missed.

However, the missing of a deadline had become so routine as to be uneventful. In

the most extreme case, David at Bulk Mailing describes a 12-month project as a

success even though a few moments earlier he had stated that it had taken nine

months longer than the original three-month estimate.

“David: We’ve been bogged down with the D-ROT project now for 12 months,

it was meant to be a three month project and now it is nearly 12 months. It is

coming to an end so we will see what happens next.

...

Researcher: That was quite interesting about the project. You said it took 12

months instead of 3, but everything you said a moment ago was in terms of

success. Most people who define a project that over ran by 9 months on a 3

month schedule as not successful.

David: I hadn’t thought about it like that before. That’s quite interesting.

Researcher: So, nobody in the company has raised this as an issue?

David: See, I always judge something as success based on whether it works or

not. I don’t suppose I’d really thought about the time scales.

I had thought about time scales but we’re always being told that it is taking too

long.”

David was not alone in describing how managers set unrealistic deadlines, nor was

he alone in tuning out deadline dates and manager’s exhortations to meet the date.

It appears that both developers and managers are stuck in a mental model that is

reinforced by single loop learning - shown in Figure 9.

Software Development as Organizational Learning

Allan Kelly Page 75 of 118

Figure 9 - Single loop learning reinforced mental model of deadlines

Nor is this view confined to the subjects of this study. Glass reports similar

attitudes elsewhere:

“on this consulting job ... I made a heavy, pointed pitch for schedule relief. I

said things like, ‘The approach you are taking to accelerate schedule is actually

costing you long term, in that enhancements and system testing are taking such

unpredictable long periods of time that it is not possible to achieve any

anticipated schedule’.” (Glass, 1998)

Senge would identify this as an example of Shifting the burden (Senge, 1990, p.

104). If we believe Glass this is the problem in the software industry:

“So what’s the bottom line? That schedule problem is the most overwhelming

problem of today’s software organization, overriding almost any other problem

you might think you have; the problem is culturally ingrained ...

let me add one more bottom line: Schedule pressure is the most serious problem

facing software projects today. There is no silver bullet answer to the question

(...) The only approach working within the problem is old-fashioned

communication.” (Glass, 1998)

5.2.1.4 Technology as goal displacement

Another example of single loop learning reinforcing a faulty mental model was

observed at Supply Chain Systems. In this case the model centred on goal

Software Development as Organizational Learning

Allan Kelly Page 76 of 118

displacement where technology was seen as a solution to the problem - show in

Figure 10.

Figure 10 - Single loop learning reinforced goal displacement

Although the developers single loop was eventually broken managers continued to

see the solution as technological in nature. Management belief in a technical

solution to their problems blinded them of the need to reform other aspects of the

company.

For Supply Chain, success in breaking the mental model of developers, albeit

largely by replacing them, led to success for the software project, while failure to

break this loop for management led to the failure of the company.

5.2.2 Double loop learning

5.2.2.1 Involve all customers, spread the knowledge

Transport Corp has an innovative prioritisation procedure. Faced with far more

work than the development group can handle the lead developer, his manager and

their internal customers hold fortnightly prioritisation meetings. Each customer

makes a case for their project to be priority number one. The IT staff stand back

and allow the customers to decide the prioritisation order. The customers debate

their relative business needs and potential revenue generation from their projects

before finalising a priority order from which the development group will work.

Software Development as Organizational Learning

Allan Kelly Page 77 of 118

In the interests of fairness customers have an additional option. If they feel their

project has been unfairly treated they may draw up a business case and seek funding

from the company for external development - the development group will manage

such development.

In prioritising the projects diverse parts of the organization learn about other parts of

the organization. They become aware of other groups requirements, problems and

opportunities. Thus, not only does the development group resolve its scheduling

problems but the company as a whole increases in self-awareness and engages in

boundary spanning learning.

5.2.2.2 Second systems

Perhaps surprisingly, three of the companies studied were in the process of

developing computer systems to replace existing systems. Although motivations for

doing so were varied no organization was writing a direct replacement. Each

replacement embedded new ideas and features that could only be derived from

seeing an existing system, or, through the actual process of developing afresh.

Bulk Mailing operations were already automated by a system written in COBOL

and running on an IBM operating system and hardware. The company had noted

that COBOL programmers were becoming more difficult to hire, and more

expensive so set about replacing the system, this time writing in C++ on Microsoft

Windows with commodity hardware. Rather than write a direct functional

replacement they also set about generalising the system so that tasks which

previously required programmers could be performed by operators.

Even here the process was not a direct feature translation. There was no list of

existing features to be rewritten and generalised. Most work originated from the

project manager. He was familiar with the existing system and process, his insights

led to requirements. Many of his insights came not from the existing COBOL

system but by seeing how the new system developed. For this manager the existing

system, and the evolving system served as learning tools.

The developers too contributed to this process. While some of their insights and

suggestions came from the two systems they were also motivated by the technology.

The emergence of new technology served as a trigger for them to reflect on their

current activities. New technologies led them to question the best way of encoding

and presenting a solution.

Software Development as Organizational Learning

Allan Kelly Page 78 of 118

While the developers at Bulk Mailing were replacing a system that had been

running well for some years the developers at Supply Chain Systems were replacing

a system which was only months old. Again, the existing system served a learning

tool. Through its development the organization had been able to explore the

application domain. In doing so, the system seems to have created more questions

than answers; these questions mapped out the space that the new system would need

to fill.

The third case of system replacement occurred at Hedge Fund Inc. Unlike the two

previous examples where new developers developed a new system, the new Equity

Risk System at Hedge Fund was designed by the same person as the original.

This case is difficult to explain because it is perceived as a success in Chicago and a

failure in London. It appears that while the developers did learn from the past and

did produce an improved system for Chicago they were also blind to the

requirements of London. In part this is explained by what Brooks (1995a) calls

“second system effect”, the tendency to design the second system with

embellishments withheld from the first system.

The knowledge gained from developing the first system, and from seeing it in use,

was undoubtedly useful to the designer in developing the second system. There

seems a clear case of learning in action here - probably both single and double loop.

However, the designer’s education had not encompassed the London office, he had

failed to learn lessons here and what he had learned in Chicago blinded him to

variations.

5.2.2.3 Refactoring and rework

 “Refactoring is the process of changing a software system in such a way that it

does not alter the external behaviour of the code yet improves its internal

structure. It is a disciplined way to clean up code that minimizes the chances of

introducing bugs. In essence when you refactor you are improving the design of

the code after it has been written.” (Fowler, 2000, p.xvi)

At least two of the organizations studied practised refactoring of code. The

motivation for refactoring comes from several sources: code reviews conducted by

other team members, personal reflection on the code written and changes in wider

system and technology which cause the developers to reflect on their existing code

base.

Software Development as Organizational Learning

Allan Kelly Page 79 of 118

Refactoring seems to be a case of reflection and double loop learning. In

refactoring developers acknowledge that their first attempts may not be the best

possible solution. Even it was once the best possible solution other elements of the

system may have changed making this part deficient.

However, refactoring also seems to be the source of tension with managers. In this

study David echoes Fowler’s descriptions of tensions which arise when

management do not accept the case for reworking. Again we see a business-

technology conflict.

Jack at Transport Corp is using code reviews and refactoring to directly challenge

his developers’ mental models about how they write code and approach business

problems. Here the tension described by David and Fowler is reversed but is used

to good effect.

5.2.2.4 Monkey see, monkey think, monkey learn

Several of the interviewees describe how customer describe their requirements to

software developers or business analysts. The developers then engage in discussion

with the customer as to the technical possibilities, this may lead to the construction

of some software or further discussion. Tom at Hedge Fund Inc described the

process:

“Normally the traders would approach us with something, we’d go away and

think about it, then come back to the business with what we thought we could do

and how long it would take. Normally the things we were doing we could

prototype within a few days. So we would do that and show it to them, and they

would say ‘Yes this works in some respects, not in others, it’s not showing me

what I need, etc.’. Then we would have an open discussion on what could be

done.”

This itself represents a form of double loop learning and knowledge combination.

The business knowledge of the traders and the technical knowledge of the

developers is combined, through dialogue, to explore the application and solution

domain. Both sides question what is required, how it may be undertaken and what

resources are needed.

At Transport Corp. the same process operates but in a more structured way. Initially

the business analysts explore the application and solution space with the customers

and developers. The findings are codified in an options document. As the process

Software Development as Organizational Learning

Allan Kelly Page 80 of 118

proceeds more documents are written exploring the space in more detail as both

sides learn what is required and what can be produced.

Eventually the requirements reach the development of program code. By this stage

the requirements have been elaborated into a number of stories known as “use

cases” (Jacobson, 1992). Developers implement a number of use cases in each

development iteration. At the end of each iteration there is the opportunity for

reflection, Jack reviews the developers code, the business analysts tests the program

and the developer reworks the necessary sections. When this is complete the

customers are shown the software developed so far and given the opportunity to

reflect, command and request changes.

5.2.2.5 Developers seek to use new technologies - Personal Mastery

One problem which are largely absent from all the case studies was technical

difficulties. This may be surprising to the casual observer who would expect these

“high-tech” projects to suffer difficulty with technologies. Even when prompted the

interviewees could cite few technical problems effecting their work. These seems to

support the views of Eckstein (2003) and DeMarco and Lister (1987) noted in the

section 2.4.6.3 that project failures are sociological rather than technological in

nature.

This however does not mean that software developers do not learn and use new

technologies. Indeed, all the interviewees demonstrated a considerable degree of

what Senge would call Personal Mastery, in fact two talked directly of the desire to

learn:

“So on a personal level I want to learn all the time. If I’m not picking up new

things then I’m not happy, so I’m always thinking up new things to make

generic.” David, Bulk Mailing

It appears that technological change was a driver for these people to learn. As new

technologies and techniques emerged these people wanted to know about them.

Further, they reflected on the technologies and considered how they could be used

in their work. In many cases this led to new insights into how to overcome business

problems. New technologies and the learning of them, acted as a trigger for

reflection and inquiry.

Here again we see the conflict between business and technology. When managed

well business can harness technological change to bring about business change and

improvement. When mismanaged there is the capacity for firms to become

Software Development as Organizational Learning

Allan Kelly Page 81 of 118

outdated, or IT staff to use technological change as a defensive mechanism to resist

organizational change.

Such technology as social defence was evident at Supply Chain Systems. When

Alistair proposed his new solution to the problems afflicting the company and

development group he was met with a barrage of technical queries. The existing

developers attempted to undermine his solution by demanding that particular

technologies were used even where there was no particular need for them.

Jack of Transport Corp also spoke of the difficulties in persuading some developers

to embrace new technologies and accept change. While those interviewed here may

have demonstrated personal mastery and a desire to learn this is clearly not

universal among development staff. Several of those interviewed spoke with

despair about development staff who refuse to learn new technologies and

techniques.

5.2.3 Learning Inhibitors

Several learning inhibitors have already been noted above: faulty mental models,

single loop learning reinforcing such models, the failure to recognise the role of tacit

knowledge and the erection of social defences. However, other learning inhibitors

were noted which are worth of comment.

5.2.3.1 Separation

Separation appeared in three forms: separation from other teams in the organization,

separation from customer/users and separation from managers. Some of these

separations were physical while others were purely psychological, taking the form

of ingrained mental models. Where separation occurred dialogue became difficult

and problems usually followed. The separation also meant that the organizations

were not able to leverage their full capacity to address issues.

Every one of the five organizations considered had more than one software

development team. However relations with the other teams always seemed to be

problematic. At Warehouse Software and Bulk Mailing the second teams had

erected barriers between themselves and the teams documented here. Thus, the

teams under consideration were deprived from the knowledge and insights of the

other teams.

At Hedge Fund Inc problems occur when the London team needed to work closely

with the Chicago team. The separation between the two offices extended to the

users, the more Chicago perceived the project as a success the greater the separation

Software Development as Organizational Learning

Allan Kelly Page 82 of 118

from the London team who viewed it as a failure. The inability to bridge this divide

finally led to the cancellation of the project in London.

The failure of the old and new teams to integrate at Supply Chain Systems also

ended unhappily. The older development team gradually left the company until the

new team dominated.

Separation also occurs between developers and customer/users. Again Warehouse

Software represents the worst case scenario, the development team find it

increasingly difficult to meet the customer requirements. Likewise, it is the failure

of Hedge Fund Inc’s Chicago developers to consider the requirements of the

London traders which creates problems.

Supply Chain Systems offers an interesting solution to this problem. Here the team

were developing a generic system which would be sold to many customers. The

team did not have access to potential customers because they had yet to be sold the

system. The company resolves this problem by employing domain experts who act

as proxy customers.

The proxy customer even has two advantages over a real customer. Firstly, the

proxy customer and developer work for the same organization, so there is no need to

hide information from one another and their goals are closely aligned. Secondly,

the proxy customer is always available for consultation over a problem, unlike a real

customer were access is limited to defined meetings.

There is another problem introduced by separation of developers from customer,

that of fairness. Kim and Renee (2003) have suggested that there must be fairness

in a process if managers are to secure commitment from employees in knowledge

based companies. For example, one of the central points of contention at Hedge

Fund Inc is the perception in London that the Chicago developers are not acting

fairly.

It may be possible to extend this argument to customers - particularly internal

customers. The prioritisation process at Transport Corp is seen to be fair by all

participants. Supply Chain Systems side-step this problem by using proxy

customers when deciding requirements and features.

Finally, there is a separation between management and the development teams.

This seems to be the most difficult conflict to manage. Senior managers at

Warehouse Software were repeatedly told by development staff that the project was

in trouble, they were told the project lacked leadership and stability yet they refused

Software Development as Organizational Learning

Allan Kelly Page 83 of 118

to act. Similarly, the senior manager at Supply Chain Systems continued to believe

the technology team alone would save the company and failed to address the wider

issues in the company.

In both cases it appears that senior manager erected their own defences. At

Warehouse their mental model may be labelled “Developers complain” while at

Supply Chain the mental model could be labelled “Technology will save us.”

5.2.3.2 Keep teams together

One of the biggest challengers faced by the development team at Warehouse

Software concerned the worker pool. In an effort to increase the utilisation of

developers the senior managers enacted a worker pool system. All staff were

managed by the Programme Manager who assembled teams dynamically as and

where staff were needed.

When not required by the project staff were returned to the pool and could be

assigned to other projects. When the project hit trouble staff would be quickly

reassigned to the project.

Figure 11 - The Resource pool at Warehouse Software

Consequently projects had few permanent staff to maintain the overall vision and

design. Staff assigned to the floundering project knew they could be transferred off

the project at any moment. Not only did this make it difficult for the project to learn

but it also removed the incentive.

Software Development as Organizational Learning

Allan Kelly Page 84 of 118

The pool method could hardly be more different to that of Alistair’s team at Supply

Chain Systems. Initially Alistair and his team worked for Browser Corp in

Mountain View. Alistair’s line manager, moved from Browser Corp to Supply

Chain Systems to become Vice President of Software Development. She in turn

recruited Alistair who proceeded to reassemble the whole team working for the new

company in Mountain View. Alistair was quite clear about this:

“I basically recruited only people I knew. That’s how teams really work well, is

if you have established personal relationships.”

Problems occurred for Alistair when it was necessary for the team to expand or

work with other teams. New recruits to the team found it difficult, though not

impossible, to integrate. While at Browser Corp the team had been required to

work with a team based in France acquired when Browser Corp bough a French

company. Problems integrating the too teams, aggravated by time differences were

eventually resolved when the French developers resigned. The situation which was

to repeat itself at Supply Chain Systems.

Alistair’s team has all the hallmarks of a high performing system (Vaill, 1996),

however, such teams present their own challenges.

5.2.4 The role of identity

At the start of the research identity was not considered to be a major force in the

field. However, identity issues and assertion of identity appeared again and again.

Identity was apparent in discussions concerning teams, vision and leadership.

Teams which hold shared vision also share an identity since the vision forms part of

the team identity. The stronger the vision the stronger the identity. This is

articulated by Alistair:

“We went in to save the company.”

And later:

“all of the executives saw us as total saviours that would get them out of the

shit.”

The team identity and vision are clear, not only to the team themselves but to the

executives at Supply Chain Systems. Whether these executives were right to invest

so much faith in the team is another question but the vision is clear.

There is an important role for leadership in this context. Although the team already

existed they were re-purposed by the management of Supply Chain Systems,

Software Development as Organizational Learning

Allan Kelly Page 85 of 118

primarily the Vice President. The very act of bringing the team from Browser Corp

will have enhanced identity, while presenting the team with a “mission” allowed a

new vision to complement the identity. Alistair too shows leadership in the way he

relates to his team, allowing them to share the vision and build the identity.

Elsewhere, at Bulk Mailing, we see creative conflict through identity assertion.

David asserts his identity as a software engineer by learning new technologies and

rethinking solutions within the engineering frame of reference. This brings him into

conflict with his manager who asserts his identity as a manager by pushing for new

functionality, new features, faster delivery and questions the need to reengineering

solutions which work.

Again we see the business-technology conflict. This time the conflict is identity-

based and mediated through communication, inquiry and reflection. Indeed, we can

see identity as central to teams, vision and leadership, while the questioning process

works to modify these themes - shown in Figure 12.

Figure 12 - Identity is central to teams, vision and leadership while inquiry,

relfection and communication revolve around these themes

Such conflicts are not always managed well. Jenny at Warehouse Software

commented:

Software Development as Organizational Learning

Allan Kelly Page 86 of 118

“I know for a fact that Brian tried to manage the project and was told not to do it.

People were restrained from stepping in and managing the project, so it didn’t

have leadership.”

Management’s reaction to Brian can be conceived as an ego defence. To have

allowed Brian, or any other software developer, to manage the project in the default,

would represent an acceptance of management failure and a threat to management

identity. Had Brian succeeded and the project environment improved this would

only further have questioned management and developer identities.

Identity assertion is also apparent at organizational level. Tom recalls how Hedge

Fund Inc came to develop a new system:

“Tom: ... One particular project which was to replace the equity risk

management system. The company had formed by being spun out from a big

organization and had taken many of the IT systems with them, including a new

equity risk management system.

At some point people in Chicago decided they could write one which was better.

Our IT team in Chicago decided they could do a better job.

Researcher: This requirement came from the IT side?

Tom: I think it came from the business side, they wanted to be free from

influence from the original firm. They didn’t want to be dependent on the parent

organization.

A second motivating force was they wanted enhancements and they wanted them

quickly. If they remained dependent on the parent they would never have been

able to get them. They wanted the application to go in a different direction to the

one it was going in from the parent organization.”

Although the decision to develop the new system is stated rationally there seems to

be an underlying need for the subsidiary to assert its identity as distinct from the

parent company.

When problems emerged with the system the company is unable to resolve them

until external events force them to do so. Rationally it should be possible to resolve

such problems without external stimulus. However, in this case the company is not

simply dealing with technical problems but is dealing with issues of business

strategy and the very identity of the company; combined, these make resolution

more difficult.

Software Development as Organizational Learning

Allan Kelly Page 87 of 118

5.2.5 Practices of organizational learning

5.2.5.1 Inquiry

There is clear evidence of inquiry occurring in these studies. This occurs in the

technology, business and personal domains. As already observed, many of the

interviewees were personally motivated to inquire into new technologies and

techniques. However, this is not a universally held attribute of software developers,

the absence of inquiry in some developers is a source of concern and tension with

those who do possess the attribute.

In the business domain there is both a basic, single loop, inquiry when developers

simply “learn about the business” but there is also evidence of a more complex,

double loop, form of inquiry where the values and reasons for development are

questioned. This was very clear at Bulk Mailing and Supply Chain Systems.

Inquiry seems to operate well where both developers and non-developers,

specifically managers, are involved with the inquiry. For example, we see

development and managerial staff combining to question current processes and

combine their knowledge in the search for improvement. However, where one side

alone practises inquiry tensions arise, for example, at Warehouse Software

developers questioned the values behind management decisions (or lack of

decisions) but when these insights were offered to management they were ignored.

This probably fed developer’s disillusionment with management.

The business analysis stage of system development is by nature an inquiry process

and can be quite systematic in nature. This form of single loop inquiry can itself

become a defence mechanism:

“For about two or three months [the business analysts] were doing the

requirements for goods out. I was trying to get them to give a high level view of

how this would work. They spent about two months going to the low level. ...

Eventually I got involved and we got together with the customer and the people

doing the design and requirements, and we sat in a room and put together

diagrams. That needed doing three months earlier.” Jenny of Warehouse

Software

5.2.5.2 Reflection

Although no interviewees specifically mentioned the practice of reflection, or

indeed described any attempt to openly engage in reflective practices, there was

evidence that some reflection was occurring. Since three of the interviewees were

Software Development as Organizational Learning

Allan Kelly Page 88 of 118

no longer involved with the projects concerned they had had time to reflect on the

events, how much reflection occurred inside the project is impossible to say.

Several processes were observed which constituted a form of reflection, or a trigger

for reflection. For example, code reviews could allow developers to reflect on one

another’s code. Where iterative development processes employed developers and

customers-users had an opportunity to reflect on the work so far, whether it met

their requirements and reconsider the requirements themselves.

5.2.5.3 Vision

Small and large visions feature frequently in the interviews, usually expressed in

terms of “buy-in”. There is an awareness from most of the interviewees of the

importance of achieving “buy-in” for any change, be it a new development, a re-

development or organizational change. There is an implicit acceptance that creating

a vision, achieving buy-in, is an essential part of the development process.

What makes this particularly interesting is that vision is almost completely absent

from the classical, process-centric, view of software development (e.g. Ince, 1990,

McConnell, 1993, Pressman, 1997, Somerville, 2001). Even recent advocates of

Agile software development (e.g. Cockburn, 2002, Beck, 2000, Eckstein, 2003) fail

to explicitly recognise the role of vision although they do seem to implicitly

acknowledge the role of shared vision.

While all interviewees could articulate the business objective of their development

group there was wide difference in the degree to which they had bought into the

vision. The degree of “buy in” seemed to be closely related to the degree to which,

as individuals, they could associate the greater vision with their own vision.

Personal vision seemed to be closely related not only to financial rewards but to

individuals values and goals. Indeed, these three aspects seem to be woven into the

identity of the individuals: Alistair openly, if somewhat jovially, cites money and

fame as part of his objective, his identity is, in part, created from the twin themes of

wealth and technology prevalent in Silicon Valley.

In contrast David, who wants to work for a dedicated software company rather than

a business which happens to write software, defines his personal objective in terms

of learning new skills and producing quality work thus supporting his identity as a

software engineer. Strong visions seem to support individual and team identity, as

described in section 5.2.4.

Software Development as Organizational Learning

Allan Kelly Page 89 of 118

Where a strong, shared, vision is in place it exerts a force for convergence. All team

members, and the work they are going, are working in the same direction. In

contrast, where the vision is absent individual visions (and defences) pull in

different directions. As such, vision seems to fulfil the role claimed by

methodology in the classical literature. Both give order and guidance in a complex

environment.

There seem to be three interwoven themes at work in discussing vision:

• An individuals understanding and belief in the big vision

• The relationship between the individual’s vision of their own identity

• How, or even whether, the vision is broken into small chunks, which place the

individual within the big vision.

For example, Alistair enthusiastically describes the big vision of Supply Chain

Systems, he can break this down into smaller chunks that narrate his role in

changing the world. These chunks of vision represent work for him that is

compatible with his sense of identity. Taken as a whole, by asserting his role as a

software designer he can save the company and change the world.

Interestingly, each of the interviewees also expresses an identity of a software

developer, this identity seems to provide what we may call a “default vision.” We

may summarise this vision: “Using computer technology in an orderly fashion to

satisfy a business need.” This vision is rooted in the classical literature and provides

the developers with a starting point for their work.

The “default vision” is in effect a mental model. It is good in so much as it allows

developers like David to drop into a non-technical environment and operate, and it

can be leveraged, as at Transport Corp as a force for change. However, it may also

be the source of social defences and resistance to change.

Paradoxically the “default vision” substitutes “process” for “vision.” This is a

mechanistic approach that allows a process to be repeated on another project, even

though each project will have a unique vision. While there are virtues in a

repeatable process it has come to dominate the literature on software development at

the expense of vision.

Again, it is possible to see this in terms of business-technology conflict where

business vision meets technology process. Alistair’s high performing team at

Supply Chain Systems had adopted the business vision as their vision, this resulted

in a strong, tacit process beyond codification:

Software Development as Organizational Learning

Allan Kelly Page 90 of 118

“It was kind of deliberately not written down. But it was a process that really did

deliberately exist. And that is very important, and that is what I’d say to people.

Even though you can’t point at a process you know that we have [one].”

Alistair’s team have the most repeatable process studied but, in a second paradox,

have the process furthest removed from classical literature.

5.2.5.4 Team learning

Although teams have already been discussed in context of learning inhibitors

(section 5.2.3.2) and shared vision (section 5.2.5.3) it is worth considering the role

of team learning specifically.

It is often assumed somewhat casually that learning detracts from performance.

This may be true if we consider purely canonical learning such as classroom

sessions and reading text books but this may not be the case were learning takes the

form of problem solving and innovation.

If learning does detract from performance than we would expect those teams with

least to learn to be the most productive. Certainly in the case of Warehouse

Software this is not true. Here we have a group of business analysts and developers,

who are skilled in the field of warehouse logistics, yet one of the most difficult

problems the team faced was defining the project requirements. Conversely, the

new development team at Supply Chain Systems knew very little about the supply

chain but encountered no such problems even though they had to learn “on the job.”

It seems that learning and problem solving need not detract from team performance,

indeed, the explorative nature of the team at Supply Chain may have added to the

teams overall performance.

In a changing environment this may actually help, as noted in (section 5.2.1.1)

developers may be burdened by existing mental models of how things work. David

at Bulk Mailing notes:

“When you start coding a project, things change, things we thought were true

one day turn out to be wrong the next, we’re constantly learning how things

should be”

David’s team is also interesting because the development team is relatively new to

the business, and contains no solution domain experts:

“We frequently find ourselves in over our heads in terms of technology.”

Software Development as Organizational Learning

Allan Kelly Page 91 of 118

Overall David gives an impression of a fairly junior team that is still learning the

technology and business yet is productive and works well together. This seems to

support Guinan’s (1998) findings that teams with similar skill levels have more

effective team processes.

5.2.5.5 Leadership

While each of the interviewees were in their own way leaders each of these studies

also contain an offstage leader who was absent both from the interview and much of

the technical work undertaken by the teams.

Many studies of leadership take the top-down view, being written for, or about

leaders, as such they consider what a leader does, what the leader should do, how a

leader may motivate their team. In this study we take the bottom-up view of

leadership, that is, how the leader(s) appears to the interviewees, what the leader

was doing that worked, or didn’t work.

In several of the studies the absent leader takes on the role of enabler. The Vice

President at Supply Chain Systems hired an existing team and empowered them to

come up with a solution. This done her role is secondary to the technical

development. This model is repeated at Transport Corp where a new leader gave

Jack the authority to bring about change and improve the environment.

A contrast to this is the abdicated leader. This is clear at Warehouse Software

where the senior management decline to accept responsibility for the project.

Indeed, rather than enabling and empowering the project team, in the one example

of the senior management taking action they instruct the emergent leader of the

project to stop. There are also signs of abdicated leadership at Hedge Fund Inc

where senior management, confused by the contrasting claims of success and

failure, allow the project to continue until external events force action.

In outward appearance the two paradigms of leadership share a lot in common, i.e.

the leader is absent and decision making is left to the technical staff. However, in

the first the leader trusts the developers, who are empowered to draw on their own

experience and move the project forward. In the second, there is a lack of trust,

staff are hindered and their experience discounted.

5.2.5.6 Planning as learning

Across the studies plans and planning was quite varied and largely ad hoc. A “plan”

was inevitably associated with a document whether this was a written English

document, a project plan or a technical design using a notation such as UML.

Software Development as Organizational Learning

Allan Kelly Page 92 of 118

One common theme that does emerge about the planning process is the failure of

schedule plans as constructed with Microsoft Project. This type of planning seems

to consume time without adding much benefit so is abandoned, or is used as goal

displacement by individuals to avoid underlying problems.

Certainly, the use of plans, and the planning process, in actual software

development contrasts sharply with that described in the classical literature. Of the

organizations considered only Transport Corp had documents and plans that would

be recognisable to one schooled in the classical process thinking. Analysts create

use-cases (Jacobson, 1992) to describe requirements in a story like format. This is

an example of Coplien and Harrison’s Scarnarios Define Problem pattern (2003)

with the business problem to be solved emerging through the creation of use-cases

which allow exploration of the problem space.

Warehouse Software created requirements documents, indeed these were necessary

as part of their contractual arrangements. However the failure of these documents to

remain stable is cited as one of the failings of the project.

The use of documents and plans as instruments of control, as formalised agreements

between groups, arises on several occasions. On other occasions there is a clear use

of documentation as a planning and learning tool. Alistair talks of writing

speculative documents that are discussed and refined into plans, writing documents

to better understand a problem or resolve conflict.

David discusses a document-less planning process where the developers explore the

problem space:

“When we start a new project, we’ll sit down either the three of us, or just me

and one of the guys, and we’ll draw diagrams, write lists, throw in some

technology ideas, that sort of thing.”

The document-less planning practised by David and Alistair seems to work well for

their teams. However, where documents are written they frequently become

contentious because they become part of a formalised contract. (In fact, David and

Alistair both document their plans through informal mechanisms of personal

notebooks and e-mail archives respectively.)

In so much as documents are synonymous with planning, the process of creation

represents an exploration of a domain and a learning activity. Once complete they

form part of the contract and consequently change becomes difficult. These

document plans are expected to fulfil two conflicting roles.

Software Development as Organizational Learning

Allan Kelly Page 93 of 118

At Transport Corp this conflict was overcome through extensive dialogue during

development process, in effect a formalised conflict resolution process. David and

Alistair too surrounded documentation, formal and informal, with dialogue. These

mechanisms seem to allow the plan to fulfil a role as a learning instrument rather

than one of control.

5.2.5.7 Communication

Of the five studies, the two which experienced the significant problems both had

communication difficulties. In particular communication between end users and

developers were difficult. Hedge Fund Inc shows this particularly clearly, in

Chicago where developers and traders were co-located there seemed to be few

problems with the system. The London office followed the same practice for small

projects but with the Equity Risk Management system the Chicago developers did

not have clear communication with the London traders.

Although the geographical separation was less extreme Warehouse Software also

separated their users/customers from the developers. This time the separation was

between two businesses were communications, in the form of documentation,

formed part of the contract. After the start of the project all communication was

channelled through business analysts who had difficulties communicating with both

the customers and developers.

An interesting difference of opinion emerges concerning e-mail, Jenny saw e-mail

use as part of the problem at Warehouse Software:

“There came a point where the [business analyst] was working by e-mail with

the customer, which was OK when they were firming up on particular points, but

they never got back into meeting the customer on a regular basis and talking to

them face-to-face.”

But Alistair saw e-mail as an integral part of the process:

“What really made the team work was communication, we had a team mailing

list, and we are all on instant messaging, and we would continually spit

information out onto the mailing list, and it was like a continuum of thought.”

A full discussion of the role of e-mail is beyond this paper and is an active research

arena in its own right (e.g. Wilson, 2002, Johnson, 2002). However, it seems fair to

say that in these cases it was not so much the medium, but the process of

communication that was the issue.

Software Development as Organizational Learning

Allan Kelly Page 94 of 118

Jenny’s team was experiencing problems communicating across companies, and

with frequently changing personnel. Alistair’s team in contrast already knew each

other well and were communicating freely. This would appear to support Coplien

and Harrison’s Work Face to Face Before Working Remotely pattern (2003).

Particularly interesting is Alistair’s tendency to initiate conflict in communication.

He describes this process:

“They [the French team] would see me send a message to the guy who sat next

to me complaining about his design and code, needling about stuff, and they

would be like “Why didn’t he just go to the cube next door? And he’s doing this

in public, like he wants to point him out.”

I deliberately did that because I wanted everyone else to seed discussion. And I

deliberately put humour into what I was doing to show that I was having a matey

conversation with him.”

This indicates a high degree of sophistication in the communication process; such

sophistication is only possible because the team actually know one another very

well - this also helps explain the teams difficulties in accepting new members as

described in section 5.2.3.2.

In the more structured process environment of Transport Corp communication also

plays an important role. The process used by Transport Corp offers multiple

opportunities for developers, business analysts and customers to discuss issues.

However, this is a very structured process when compared to the communication

process at Supply Chain Systems. In part this is a result of function; the business

analysts and developers at Transport deal with a multitude of frequently changing

customers while the staff at Supply Chain mainly talk amongst themselves.

5.3 Success and Failure

Although not strictly part of the framework of this study no discussion of the study

would be complete with reference to the ambiguous nature of success and failure in

the cases examined.

Fincham (2002) has previously noted how the computing industry “seems

perversely captivated by its own failures” and how a failure narrative could be used

to motivate change and later success. As noted before - section 5.1 - the classical

view seems to find failure in all environments, this seems to provide motivation for

more rigorous processes.

Software Development as Organizational Learning

Allan Kelly Page 95 of 118

At a casual level success and failure appear to be binary, exclusive labels. In these

terms, a project is either a success, or it is a failure, it cannot be both. Linberg

(1999) described a software development project which, for the company

management was a failure, however, the software developers considered the project

a success. A similar scenario plays out at Hedge Fund Inc where the new Equity

Risk Management project is a success in Chicago but a failure in London. Each

office uses its own narrative of success to support it’s own identity - shown in

Figure 13.

In both the Linberg and Hedge Fund cases a single project is simultaneously a

success and a failure.

Software Development as Organizational Learning

Allan Kelly Page 96 of 118

Figure 13 - Single loop learning reinforces identity at Hedge Fund Inc

Software Development as Organizational Learning

Allan Kelly Page 97 of 118

At Bulk Mailing, and Supply Chain Systems we also see a disconnect between the

definitions of success and failure. In the former a project which runs nine months

longer than its original three month schedule is seen as a success, while at the later a

development project is described as “near perfect” while the company fails.

In fact, the situation at Bulk Mailing is even more complicated. David describes

verbally, and emotionally, his environment as failing because he cannot follow

classical processes, yet in business terms the development group is a success.

5.4 The musical metaphor

The five case studies considered here are all very different. In fact, the single most

common factor among them is how poorly the classical view of development

describes them. Of the five companies, three, Warehouse Software, Transport Corp

and Supply Chain Systems all operate within supply chain sector yet are widely

different.

At Warehouse Software there is a complete failure of management. It is difficult to

find any positive lessons in the story.

Transport Corp presents a stark contrast to this. Here we see the lead developer

centre stage in co-ordinating activities, helping business analysts, software

developers and customers continue with their work. Using Drucker’s (1985)

symphonic metaphor we can characterise Jack as the conductor. The Methodology

used by the team parallels the musical score, telling analysts and developers when to

play their parts. While no two projects will be the same they are recognisably

performed to the same score.

This metaphor does not fit Supply Chain Systems, they reject any attempt to

transcribe their performance. Each team member knows their part and where the

team is heading but there is no score to describe the route. Here Weick’s (1997,

1999) jazz metaphor seems to provide a better analogy. By not transcribing their

score the team allows itself to constantly engage in innovation and renewal. The

team are constantly monitoring the movements of each other, sometime responding,

sometimes not; division of labour is minimal and the team are tightly bound by

social ties.

Neither metaphor is necessarily superior, what is important is that there is a form of

organization. An organization may aim for a symphonic structure but if it arrives at

a jazz structure this should be valued equally. (An organization aiming for a jazz

like structure seems unlikely to end up with a symphonic structure though.)

Software Development as Organizational Learning

Allan Kelly Page 98 of 118

5.5 Does learning view add value?

Section 3 (Objectives and research methodology) set out two objectives:

• To illuminate the software development process as a learning centred activity.

• To suggest ways in which software development may be improved through the

application of organizational learning principals.

These objectives echo the call by Willcocks (1997, p.xxv) for a “paradigm shift to

be made if we are to transform the track record of systems development” and by

Fitzgerald (1995) for software developers to move away from the lamppost of

methodology. It is therefore worthwhile to consider whether the organizational

learning view expressed here furthers any of these ideas.

From the discussion above, it is clear that the organizational learning view can

provide a lot of insights into the software development arena. Indeed, the nebulous

nature of organizational learning means the discipline provides a wide range of tools

with which to analyse the arena. This is in stark contrast to the classical literature

on software development that relies on the single tool of process.

Viewing software development through the lens of process and methodology seems

to be flawed in two important ways. Firstly, almost all development exercises are

condemned to failure, either for failure to provide a rigorous process framework, or

failure to work to the framework. In reality developers follow process which are as

influenced by their business environment as they are by the software textbooks.

Secondly, where rigorous processes are defined they are no guarantee of success.

The processes themselves offer numerous opportunities for failure, for example,

through goal displacement.

In contrast, the learning view offers a plentiful supply of analysis tools but little by

way of pre-packaged solutions to apply. Instead this view provides a number of

general practices centred on inquiry and continual learning.

For software developers who work daily with logical computers and programs, and

who are literally schooled in logic, the rational, process centric view of the

development process presents a strong pull. The nebulous, at times seemingly

illogical, learning view is somewhat more difficult to accept.

In truth, the development process is far more complex than that documented in the

classical literature. In order to fully understand software development as a rational

process we must delve far deeper than current literature does. The process diagrams

Software Development as Organizational Learning

Allan Kelly Page 99 of 118

in Appendix B have been drawn from interviewees’ own accounts and highlight the

great complexity in processes.

Rationality exists in the process but it resides at the individual level, not at the group

level. None of the interviewees could be said to be irrational but their development

processes contained elements which are difficult to explain in rational terms.

This is not to say that the software development process is irrational, only that to

understand the process as a rational entity requires such a wealth of detail that such

a study would be overwhelmed with minutiae. Consequently, the rational view is

limited in its value.

As noted in the literature review (section 2.4.1) this is not the first study to look

beyond rationality and methodology of the development process. Indeed, Brook’s

Mythical Man Month (1995a), Weinberg’s Psychology of Programming (1998)and

DeMacro and Lister’s Peopleware (1987) all move outside the methodological view

and remain. While the technical books come and go, and classical software

engineering books like Somerville and Pressman are updated every few years these

three best sellers merely issue anniversary editions every 20 years or so. In short,

the methodological view dates but the amethodological is timeless.

However, what the amethodological view has lacked is a framework into which

observations can be placed, explorative narratives created and insights gained. By

adopting an organizational learning perspective such a framework can be

constructed. What emerges from this framework are two core findings which do

differ from the classical understanding.

First, software is developed in an emergent fashion. The Waterfall model, and “big

bang deliveries” frequently used to describe software development are wrong. The

emergent view has been gaining ground for some years, by placing this in a wider

framework we can understand how and why the emergent view provides a better

understanding.

Second, there is a deep-seated conflict between information technology and

business. Successful management of this conflict offers significant opportunities for

competitive advantage. However, managing this conflict is difficult, the first step

towards leveraging this conflict for advantage is to acknowledge that the conflict not

only exists but can be managed to bring about benefits. The view that this conflict

must be resolved once and for all, and that there is a definable solution to it is not

only wrong but deprives us of the opportunity to leverage the conflict for advantage.

Software Development as Organizational Learning

Allan Kelly Page 100 of 118

Ultimately, these two insights show that the organizational learning paradigm does

add value to our understanding of software development.

Software Development as Organizational Learning

Allan Kelly Page 101 of 118

6 Conclusion

There appears to be a mismatch between the software engineering as described in

the classical texts and that which is actually practised by developers. While there is

evidence that software developers do adapt advocated methodologies to their needs

the classical view seem to exert a greater influence on their identity than on their

activities.

While the classical view is lacking in analysis tools to explain development

activities, consequently analysis tends to concentrate on process and adherence to

process. In contrast the organizational learning view has a surfeit tools which

provide for a rich explanation of software development.

Both views offer a number of practices that may be used to improve the

development cycle. The classical practices tend to be prescriptive, based on a

rational approach, while the organizational learning practices tend to be social in

nature, centred in individual and group interactions.

The primary source of problems in developing software appears to be conflict

between business, represented by managers, and on the other hand, the technology,

here represented by developers. Conflict occurs both in the mental models held by

each side, and in the identities asserted by managers and software developers.

Failure to manage this conflict lies at the heart of many of the issues observed in this

study. However, not only is the conflict manageable but can be leveraged as a

powerful learning tool resulting in high performance. Key to managing this conflict

are vision setting, team work and communication. This agenda needs enlightened

managers who have moved beyond scientific management concepts.

For those in the field of organizational learning, this study shows learning in action

and validates the work of many authors. Importantly, we show that the study of

organizational learning and IT should not confine itself to the realm of computer

assisted learning. Study of IT under development within organization should

represent a fruitful field of research.

For those in the field of software engineering, this study shows that there is a need

to look beyond the process and examine other dimensions of development.

Organizational learning can provide a framework for this study and curriculum for

education of developers.

Software Development as Organizational Learning

Allan Kelly Page 102 of 118

6.1 Implications for managers

The most obvious implication for practising managers is: don’t get hung up on

methodology. While development process is important, alone it is not enough, it is

not a magic bullet.

A corollary to this is the need for managers to look beyond the process and tools in

use and recognise the role of soft skills in the development process. Highly

integrated teams can use conflict to their benefit. Such teams need to be aware of

the business and buy into visions which are aligned with their own goals and

objectives.

This means overcoming a preconception that “conflict is bad.” Conflict is highly

useful if the resolution process leads to learning. However, if not managed well the

conflict may linger. Alternatively a partial resolution may occur which actually

hides the problem, or postpones a conflict - what Senge would call a “shifting the

burden” resolution.

Although managing this conflict is difficult, it is the very difficulty in managing the

conflict that offers such opportunities. Where conflict resolution easy there would

be few chances to learning. Those who are able to resolve conflicts and learn have

an advantage over many others.

While the IT industry sometimes gives the impression of being obsessed with

“skills” and experience within certain domains and sectors this study shows that

experience can in fact be a hindrance to learning. Past experience can hinder

individuals, and groups, by creating mental models that do not apply in a new

environment. An emphasis on past experience also forgoes the opportunity to

exploit Hawthorne effect, individuals merely repeating a task they have done before

may show less enthusiasm than those doing it for the first time.

An over emphasis on technical skills may also overlook the importance of soft

skills. While some soft skills are individual in nature others are the result of group

interactions. Since no two groups are the same it is necessary to develop, and

redevelop, team skills for each group.

Finally, managers should be aware of the role of IT as a change agent and tool for

learning. The days of using IT to automate activities appear to be gone, the agenda

of IT is change. Failure to appreciate this agenda may lead to incorrect diagnosis

and actions. The new role links IT in a two way exchange to issues of corporate

strategy and identity.

Software Development as Organizational Learning

Allan Kelly Page 103 of 118

6.2 Further research

A large number of avenues for further research emerge from this paper. Perhaps the

most pressing given its privileged position in the literature is research into the true

benefits of methodology, and indeed Methodologies. Beyond their role as an

abstract teaching tool and agent for change there is the real possibility that they may

prove damaging to the long-term success of a project or team.

Such research should also seek to examine the role of corporate structures on

development teams and their working processes. In classical texts the engineering

process is removed from the corporate environment, yet many authors (e,g,

Galbraith, 1996) have written extensively on organising for innovation. Potentially

software developers are missing out on a rich source of material.

On the other hand, there is also need to investigate how software developers can

change the corporate environment through their role as agents of change and of

organizational learning. While there is some research in this field (e.g. Ang, 1997,

Edberg, 2001) there is a need for more.

The role of IT personnel as change agents should highlight the role of social skills

and emotional intelligence (Goldman, 1996). Managing and implementing change

well can be demanding on such skills yet IT personnel are commonly reputed to

lack these skills. If true, then equipping these people with such skills should

enhance the change process. Alternatively, it is possible that IT staff do not lack

these skills, however, they are constantly called on to play the role of change agent

thereby taxing what skills they do have. Again, improving social skills should help

the change process.

Two more tangential research avenues are also opened up. Firstly, the role of

success and failure; how these labels are applied within narratives, and used to

support or resist change. This study supports research (Linberg, 1999, Fincham,

2002) that questions the definition and role of these labels.

Finally, this paper has referenced the study of Organizational Patterns by Coplien

and Harrison and their forthcoming manuscript (2003). These authors have also

noted a relationship between the pattern movement and organizational learning:

“More broadly, the pattern philosophy of piecemeal growth is a broadening of

the popular notion (particularly during the late 1980s) of organizational

learning. ... There are strong parallels between the organizational learning field

and patterns. For example, each believes in building on a small number of

Software Development as Organizational Learning

Allan Kelly Page 104 of 118

principles that generate rich emergent behaviour; complex systems of rules don’t

work [SwieringaWierdsma1992, 9].” (Coplien, 2003)

Many of the Coplien and Harrison’s patterns are examples of organizational

learning, as such pattern languages, drawing from work by architect Christopher

Alexander (1977), may prove to be useful in the field of organizational learning,

while the principles of organizational learning may be useful in developing pattern

languages.

Further research should both explore the parallels between the two fields, and how

pattern languages can be applied to further organizational learning.

6.3 Brooks reprised

This paper opened with three quotes from Fredrick Brooks, father of the IBM/360.

We have shown that computer programming projects can learn a lot from modern

management thinking, but, since such projects tackle issues of business strategy and

identity, together with technology there is good reason to believe they are different.

Indeed, this heady cocktail of topics may well prove Brooks right in asserting that

software is the most complex construct built by humans.

Finally, the problems in developing software appear to be dominated by social and

managerial issues. Brooks was right to focus the Mythical Man Month on people

and organization rather than technical approaches.

Software Development as Organizational Learning

Allan Kelly Page 105 of 118

Appendix A Research questionnaire

Figure 14 - Research questionnaire

Software Development as Organizational Learning

Allan Kelly Page 106 of 118

Appendix B Process diagrams

B.1 Warehouse Software

Figure 15 - Overview of development process at Warehouse Software

Software Development as Organizational Learning

Allan Kelly Page 107 of 118

B.2 Bulk Mailing

Figure 16 - Overview of the development process at Bulk Mailing

Software Development as Organizational Learning

Allan Kelly Page 108 of 118

B.3 Transport Corp

Figure 17 - Overview of the development process at Transport Corp

Software Development as Organizational Learning

Allan Kelly Page 109 of 118

Appendix C Glossary

Term Meaning Source

Agile methodologies A new set of software development methodologies which

shun much of the "high ceremony" practices present in

classical methodologies. Authors such as Beck, Cockburn

and Eckstein take inspiration from the Agile manufacturing

literature.

Cockburn, 2002

AIX A version of UNIX sold by IBM for their own range of server

and workstation machines.

Application domain "The body of knowledge that is of interest to the users", e.g.

business issues

Coplien, 1998, p.7

BA Business analyst

Back-end Part of software without a user interface and dealing with

actual processing.

COTS Common off the shelf software

Dirty Hack A piece of code which a developer does not consider to be of

professional quality, but is written because time, technology

or experience does not allow for a professional solution.

Front-end Part of sofware handling user interface and little else.

High ceremony

process

A development methodology (e.g. SSADM) which demands

rigid adherence to a set of prescribed practices and

techniques.

IS Information Systems

IT Information Technology

Low ceremony

process

A development methodology (e.g. Extreme Programming)

which has relatively few prescribed practices and techniques,

instead being based on values and principles.

Methodology

(big-M)

A branded process model which is sold commercially, or

advocated specifically, e.g. RUP, SSADM.

DeMarco, 1987,

p.114

methodology A way of working either codified or uncodified. DeMarco, 1987,

p.114

Software Development as Organizational Learning

Allan Kelly Page 110 of 118

(small-m) p.114

Plug compatible

programmer

Derogatory term used by programmers, to describe

management who regard all programmers as replaceable.

(From hardware sales terminology.)

Process Domain The body of knowledge that described the development

process.

RUP Rational Unified Process http://www.ibm.c

om/rational

SMOP Small Matter of Programming Coplien, 1998,

p.178

Solution domain "is of central interest to the implementors but of only

superficial interest to the system users" e.g. the tools and

techniques used to build the system

Coplien, 1998, p.7

SSADM Structured System Analysis and Design Methodology

UML Unified Modelling Language: a style of drawing diagrams of

software

http://www.ibm.c

om/rational

Unit test Developer testing of program code

Use case A form of story which describes how software, or a software

feature will be used. Can be used as an analysis tool, or as a

specification.

Jacobson, 1992

Booch, 1994

User acceptance

testing

Testing of program by user aimed at accepting delivery

User testing Testing of program by user

Warm bodies Derogatory term for programmers who are assigned to

projects on an "as needed" basis.

Weinberg, 1998,

p.68

XML Extensible markup language - a language for describing data.

Software Development as Organizational Learning

Allan Kelly Page 111 of 118

Appendix D Supplementary sources

Agile Manifesto (Beck, 2001)

The vision statement underlying the Agile Methodologies, e.g. Beck’s Extreme

Programming and Cockburn’s Crystal Methodology. The manifesto states four

guiding principles:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

Designing Engineers (Bucciarelli, 1994)

Through three case studies of engineering design project, Bucciarello shows how

engineering innovation and creativity comes from a multitude of sources but is

embedded in a social process.

Enabling Software Development Team Performance (Guinan, 1998)

A study of software development teams found that management and team skills to

be more important that tools or processes. Somewhat surprisingly Guinan suggests

that teams comprised of individuals of a similar skill level are more effective at

enabling team processes.

Facts and Fallacies of Software Engineering (Glass, 2003)

Accomplished software engineer and academic Robert Glass presents his 65 facts

and fallacies concerning the development process. People, management and “no

silver bullet” are reoccurring themes. Glass also argues that there is a disjoint

between the problems and issues faced by practising programmers and those which

are the focus of academic research.

How buildings learn (Brand, 1994)

Using the metaphor of learning, Brand describes how buildings change after they

are built in response to human demands and innovation elsewhere. For Brand,

successful buildings are those which evolve and allow change, where architecture

has created buildings that are highly designed, and prioritise art over people then

evolution is restricted.

How do committees invent? (Conway, 1968)

Software Development as Organizational Learning

Allan Kelly Page 112 of 118

“The basic thesis of this article is that organizations which design systems (in the

broad sense used here) are constrained to produce designs which are copies of

the communication structures of these organizations.” (Conway, 1968, p.31)

This is restated by Coplien and Harrison in pattern form:

“The structure of an organization, and its architecture, are isomorphic. ...

therefore: Make sure the organization is compatible with the product

architecture.” (Coplien, 2003, p.173)

Is Software work routinized? (Ilavarasan, 2003)

A study of software development in Indian companies refutes the idea that software

work is routinised and compartmentalised. The authors find that software work is

carried on a project basis where teamwork and knowledge sharing are key elements

of success.

Learning Company, The (Pedler, 1997)

Similar to Senge, this easy read extols the virtues of organizational learning and

describes how organizations can understand their own position relative to an ideal

learning organization and steps they can take towards enhancing their ability to

learn. The authors lack the exuberance of Senge but provide more by way of

concrete steps and organization can enact. Fortunately, these steps do not need to be

followed in sequence, probably all organizations could pick up several ideas for

improving their ability to learn from this book.

Research Methods for Business Students (Saunders, 2000)

General guidance and insights into the research process and in particular qualitative

research.

Software Development as Organizational Learning

Allan Kelly Page 113 of 118

Bibliography

Alexander, C., et al. (1977) A pattern language, Oxford University Press.

Ang, K., Thong, J.Y. L. and Yap, C., 1997, IT implementation through the lens of

organizational learning: a case study of insuror, International Conference on

Information Systems,

http://portal.acm.org/toc.cfm?id=353071&coll=portal&dl=ACM&type=proceeding.

Argyris, C. (1977) Organizational learning and management information systems,

Accounting, Organizations and Society, 2, 113-123.

Argyris, C. (1994) On organizational learning, Blackwell Publishers, Oxford.

Argyris, C., and Schön, D.A. (1996) Organisational Learning II, Addison-Wesley.

Beck, K. (2000) Extreme programming explained, Addison-Wesley.

Beck, K., et al 2001 The Agile Manifesto, http://agilemanifesto.org/,

Boehm, B. (2001) Introduction to A rational design process In Software Fundamentals:

collected papers of David L. Parnas(Ed, Hoffman, D. M. a. W., D.M.) Addison-

Wesley.

Boehm, B., and Pappacio, P.N. (1988) Understanding and controlling software costs, IEEE

Transactions on software engineering, 14, 1462-77.

Booch, G. (1994) Object-Oriented analysis and design with application,

Benjamin/Cummings Publishing Company, Redwood City.

Brand, S. (1994) How Buildings Learn: What happens after they're built, Penguin.

Brooks, F. (1975) The mythical man month: essays on software engineering, Addison-

Wesley.

Brooks, F. (1986) No Silver Bullet - Essence and Accident in Software Engineering,

Information Processing.

Brooks, F. (1995a) The mythical man month: essays on software engineering, Addison-

Wesley.

Brooks, F. (1995b) No Silver Bullet - Essence and Accident in Software Engineering In The

mythical man month: essays on software engineering Addison-Wesley, pp. 179-203.

Brown, A., and Starkey, K. (2000) Organizational identity and learning: A psychodynamic

perspective, The Academy of Management Review, 25, 102-120.

Software Development as Organizational Learning

Allan Kelly Page 114 of 118

Brown, J. S., and Duguid, P. (1991) Organizational Learning and Communities-of-Practice,

Organization Science,

2,http://www2.parc.com/ops/members/brown/papers/orglearning.html.

Bucciarelli, L. L. (1994) Designing Engineers, MIT Press.

Cockburn, A. (2002) Agile Software Development, Addison-Wesley.

Conklin, P. F. (1996) Enrollment Management: Managing the Alpha AXP Program, IEEE

Software, 13, 53-64.

Constantine, L. L. (1995) Constantine on Peopleware, Prentice Hall.

Conway, M. E. (1968) How do committees invent?, Datamation.

Coplien, J. (1999) Multi-paradigm design in C++, Addison-Wesley, Reading, MA.

Coplien, J., and Harrison, N. 2003 Organizational Process Patterns (forthcoming),

http://www.easycomp.org/cgi-bin/OrgPatterns, Wiki web site for book

Curtis, B., Hefley, W.E., and Miller, S.A. 2001 People Capability Maturity Model,

http://www.sei.cmu.edu/cmm-p/,

Cusumano, M. A., and Selby, R.W. (1995) Microsoft Secrets, Harper Collins, London.

de Geus, A. P. (1996) Planning as learning In How organizations learn(Ed, Starkey, K.)

Thompson Business Press, pp. 92-99.

Delbridge, R., and Barton, H. (2002) Organizing for continuous improvement, International

Journal of Operations and Production Management, 22, 680-692.

DeMarco, T., and Lister, T. (1987) Peopleware, Dorset House, New York.

Downs, E., Clare, P., and Coe, I. (1988) SSADM, application and context, Prentice Hall.

Wall Street Journal 1985: Playing in the Information-Based 'Orchestra', Drucker, P. F., 4 June

1985

Duncan, J., Rackley L., and Walker, A. (1995) SSADM in Practice, MacMillan.

Eckstein, J. (2003) Scaling Agile Processes (forthcoming), Dorset House, New York.

Edberg, D., and Olfman, L., 2001, Organizational Learning Through the Process of

Enhancing Information Systems, 34th Hawaii International Conference on System

Sciences, IEEE, http://dlib2.computer.org/conferen/hicss/0981/pdf/09814025.pdf?

Eva, M. (1991) SSADM version 4: a users guide, McGraw-Hill International.

Fincham, R. (2002) Narratives of Success and Failure in Systems Development, British

Journal of Management, 13, 1-14.

Software Development as Organizational Learning

Allan Kelly Page 115 of 118

Fitzgerald, B., 1994, The Systems Development Dilemma: Whether to Adopt Formalised

Systems Development Methodologies or Not?, Second European Conference on

Information Systems, Nijenrode University Press, http://www.csis.ul.ie/staff/bf/.

Fitzgerald, B., 1995, Beyond Systems Development Methodologies: Time To Leave The

Lamppost?, Information Technology and Changes in Organizational Work,

http://www.csis.ul.ie/staff/bf/.

Fitzgerald, B., 1997, Systems Development Methods for the Next Century, Proceedings of the

Sixth International Conference on IS Development methods, Plenum Press,

Fowler, M. (2000) Refactoring, Addison-Wesley.

Galbraith, J. R. (1996) Designing the innovating organization In How Organizations

Learn(Ed, Starkey, K.) Thompson Business Press.

Gill, T. G. (1995) High-tech hidebound, Accounting, Management and Information

Technologies, 5, 41-60.

Glass, R. L. (1998) How not to prepare for a consulting assignment, and other ugly

consultancy truths, Communications of the ACM, 41, 11-14.

Glass, R. L. (2003) Facts and Fallacies of Software Engineering, Addison-Wesley.

Goldman, D. (1996) Emotional Intelligence, Bloomsbury.

Guinan, P. J., Cooprider, J.G., and Faraj,S. (1998) Enabling Software Development Team

Performance During Requirements Definition: A Behavioral Versus Technical

Approach, Information Systems Research, 9, 101-125.

Hamel, G., and Parahalad, C.K. (1996) Competing for the Future, Harvard Business School

Press.

Hammer, M., and Champy, J. (1994) Reengineering the corporation : a manifesto for

business revolution, Harper Collins.

Holt, R. 2001 Software Architecture as a Shared Mental Model,

http://plg.uwaterloo.ca/~holt/papers/sw-arch-mental-model-010823.html, Position

paper to ASERC Workshop on Software Architecture

Howcroft, D., and Wilson, M. (2003) Paradoxes of participatory practices: the Janus role of

the system developer, Information and Organization, 13, 1-24.

Huysman, M. (2000) Rethinking organizational learning: analyzing learning processes of

information system designers, Accounting, Management and Information

Technologies, 10, 81-99.

Software Development as Organizational Learning

Allan Kelly Page 116 of 118

Ilavarasan, P. V., and Sharma, A.K. (2003) Is software work routinized? Some empirical

observations from Indian software industry, The Journal of Systems and Software, 66,

1-6.

Ince, D., and Andrews, D. (1990) The Software Life Cycle.

Jackson, M. (1983) System Development, Prentice Hall, London.

Jacobson, I. (1992) Object-Oriented Software Engineering: a use case driven approach,

Addison-Wedley.

Johnson, L. K. (2002) Does e-mail escalate conflict?, MIT Sloan Management Review, 44, 14.

Kidder, T. (1981) The Soul of the New Machine, Avon Books, New York.

Kim, W. C., and Mauborgne, R. (2003) Fair Process: Managing in the Knowledge Economy,

Harvard Business Review, 81, 127-137.

Kolb, D. A. (1996) Management and the learning process In How organizations learn(Ed,

Starkey, K.) Thompson Business Press.

Linberg, K. R. (1999) Software Developer perceptions about software project failure: a case

study, The Journal of Systems and Software, 49, 177-192.

Louridas, P., and Loucopoulos, P. (2000) A Generic Model for Reflective Design,

Transactions on Software Engineering and Methodology, 9, 199-237.

McConnell, S. (1993) Code Complete, Microsoft Press, Redmond, WA.

McDermott, R. (1999) Why information technology inspired but cannot deliver knowledge

management, California Management Review, 41.

Meyer, B. (1988) Object-oriented software construction, Prentice Hall, Hemel Hempstead.

Middleton, P. (2000) Barriers to the efficient and effective use of information technology, The

International Journal of Public Sector Management, 13, 85-99.

Mullins, L. J. (2002) Management and organisational behaviour, Prentice Hall.

Nonaka, I., and Takeuchi, H. (1995) The Knowledge Creating Company, Oxford University

Press, Oxford.

Orr, J., 1990 Talking about machine: an ethnography of a modern job. PhD. thesis, Cornell

University

Parnas, D. L., and Clements P.C. (2001) A rational design process: How and why to fake it In

Software Fundamentals: collected papers of David L. Parnas(Ed, Hoffman, D. M. a.

W., D.M.) Addison-Wesley.

Software Development as Organizational Learning

Allan Kelly Page 117 of 118

Pedler, M., Burgoyne, J., and Boydell, T. (1997) The learning company, McGraw-Hill.

Peters, T. J., and Waterman, R.H. (1991) In search of excellence, Harper Collins Publishers.

Pfeffer, J., and Sutton, R. (2000) The Knowing-Doing Gap, Harvard Business School Press.

Pitelis, C. N., and Whal, M.W. (1998) Edith Penrose: Pioneer of stakeholder theory, Long

Rang Planning, 31, 252-261.

Pressman, R. S. (1997) Software Engineering: a practioner's approach (European

adaptation), McGraw-Hill.

Raymond, E. S., and Steele, G.L. 2003 The Jargon File, http://catb.org/~esr/jargon/, 1996

version (4.0.0) published as "The New Hackers Dictionary", 3rd edition, MIT Press,

ISBN 0-262-68092-0, editted by Raymond

Robey, D., and Markus, M.L. (1984) Ritual in Information System Design, MIS Quarterly, 5-

15.

Robey, D., Boundreau, M., and Rose, G. (2000) Information technology and organizational

learning: a review and assessment of research, Accounting, Management and

Information Technologies, 10, 125-155.

Rothman, J., and Friedman, V.J. (2001) Identity, Conflict and Organisational Learning In

Handbook of Organizational Learning(Ed, Dierkes, M., Merthoin Antal, B., Child, J.,

and Nonaka, I.) Oxford University Press, Oxford, pp. 582-597.

Royce, W. W. (1970) Managing the development of large software systems: concepts and

techniques.

Saunders, M., Lewis, P., and Thornhill, A. (2000) Research Methods for Business Students,

Prentice-Hall.

Schwartz, P. (1991) The art of the long view, Bantam Doubleday Dell, New York.

Senge, P. (1990) The Fifth Discipline, Random House Books.

Singh, S. (1999) The Code Book.

Smith, M. (1998) Station X, TV Books (Boxtree), New York.

Somerville, I. (2001) Software Engineering, Pearson Education, Harlow.

Spear, S., and Bowen, H.K. (1999) Decoding the DNA of the Toyota Production System,

Harvard Business Review, 77, 96-107.

Starkey, K. (1996) How organizations learn, Thompson Business Press.

Software Development as Organizational Learning

Allan Kelly Page 118 of 118

Stein, E. W., and Vandenbosch, B. (1996) Organizational learning during advanced system

development: Opportunities and obstacles, Journal of Management Information

Systems, 13, 115-137.

Truex, D., Baskerville, R., and Travis, J. (2000) Amethodical systems development: the

deferred meaning of systems development methods, Accounting, Management and

Information Technologies, 10, 53-79.

Vaill, P. B. (1996) The purposing of high-performing systems In How organisations learn(Ed,

Starkey, K.) Thompson Business Press, pp. 60-81.

Wastell, D. G. (1996) The fetish of technique: a methodology as a social defence, Information

Systems Journal, 6, 25-40.

Weick, K. E. (1997) Improvisation as a mindset for organizational analysis, Organization

Science, 9.

Weick, K. E. (1999) The aethetic of imperfection in orchestras and organizations,

Comportamento Organizacional E Gesto, 5, 5-22.

Weinberg, G. M. (1998) The psychology of computer programming, Dorset House

Publishing.

Willcocks, L., Feeny, D., and Islei, G. (1997) Managing IT as a strategic resource, McGraw-

Hill.

Wilson, E. V. (2002) Email winners and losers, Communications of the ACM, 44, 121.

Yourdon, E. (1989) Modern Structured Analysis, Prentice Hall.

