
Agile Demystified 28-Jul-09

(c) Allan Kelly – allan@allankelly.net Page 1 of 18

Agile Demystified (v.3)
A brief explanation of Agile
Software Development for
managers

By Allan Kelly, consultant and author of
Changing Software Development: Learning to Be Agile (2008).

Contact allan@allankelly.net or visit www.allankelly.net

Objective
Within the software application development
community Agile has created a buzz. The term
has been around for about nine years now and
the ideas behind it slightly longer. But, many IT
managers and directors are still confused about
what Agile actually is. This paper will attempt to
clear up some of this confusion.

Contents
A brief explanation of Agile Software Development for managers1

Objective ..1

Business value ..2

Applicability ..5

Multitude of methods and terms...7

Test of Agile ...8

How Agile works ...9

Agile myths...10

What is not Agile...11

Failures ..11

Where to begin ...13

About the author...14

Glossary of Agile terms..15

Agile Demystified 28-Jul-09

(c) Allan Kelly – allan@allankelly.net Page 2 of 18

Business value
The debate over whether Agile actually delivers benefits is largely
over. While there are some projects which do not benefit from the
Agile approach most do. Gartner group said in 2006:

“It's a fact that agile efforts differ substantially from Waterfall
projects. It's also a fact that agile methods provide substantial
benefits for appropriate business processes. Separating these facts
from the fiction surrounding agile development is crucial for an
application development (AD) organization to achieve those
benefits.”

Bodies like the Project Management Institute are
moving to reconcile their approach with Agile and
the Carnegie Mellon Software Engineering Institute
issued a report late last year showing how CMMI
and Agile are compatible (Glazer et al., 2008).

Compared to earlier – so called “Waterfall” or
“Traditional” – development techniques Agile offers
a number of business advantages:

• Enhanced responsiveness to customer needs because Agile
methods are designed to accommodate changing requirements.

• Increased return on investment because projects deliver working
software earlier in the development cycle.

• Reduced risk because frequent deliveries of software both amortize
and exposes risks and forces them to be tackled.

• Improved quality because high quality actually underpins Agile
processes.

• Better project governance because projects progress is more
transparent. The incremental delivery model used allows progress
to be observed directly. Should the need arise a project may be
terminated early and still deliver valuable software.

• Greater productivity: Agile methods foster high performing teams.
A report on Agile adoption at Yahoo (Benefield, 2008) claimed
teams improved productivity between 35% and 400%.

Agile Demystified 28-Jul-09

(c) Allan Kelly – allan@allankelly.net Page 3 of 18

Table 1 - Summary of Agile benefits

Push to Agile

Pull to Agile

Traditional methods:

• Requirements freeze creates
unresponsive projects

• Record of late and over budget
delivery

• Poor quality record

• Delivery schedules do not keep
pace with demands of modern
business

• Expensive and administratively
heavy processes

Agile methods:

• Responsive to business need

• Deliver working software earlier
and continue to do so

• Incorporate customer feedback

• Higher return on investment,
improved cash flow

• Reduce risk

• High quality software

• Improved project governance

• Lightweight nature makes it easier
to start and stop project

Traditional software projects tended to deliver software at the end of
the project in a single release or big bang. This gave rise to the cash
flow profile shown in Figure 1. In such a project costs are incurred
during the lifetime of the project but benefits are only realized at the
end of the project. Even this is something of an idealized view
because such projects are usually followed by a “bug fixing” phase.
Applications are released to users, who report bugs which need fixing.

In contrast Figure 2 shows a similar Agile project, in such projects
deliveries start much earlier. Although the initial releases lack
functionality they contain enough to be usable, so benefits start
flowing far earlier.

Agile Demystified 28-Jul-09

(c) Allan Kelly – allan@allankelly.net Page 4 of 18

Figure 1 - Cash flow on a traditional Waterfall project

New software is released regularly increasing the benefits month by
month until the same level of benefit is reached as the previous chart.
In this case a number of additional benefits flow. With the software
in use there is more information on which to base decision on which
features to priorities for implemented. This in turn creates a closer
match between business need and delivered features.

Secondly, because users are actively using the software issues
become apparent far earlier and can be addressed before the end of
the project. Team leaders can then decide whether new features or
addressing issues will deliver greater business value.

Finally, IT governance is improved because managers have more
strategic control over projects. Should it become necessary to close a
project before the scheduled end-date benefits will still accrue
because something has actually been delivered. In a traditional
project, closing the project early usually leaves only part
implemented, buggy, software of little value to anyone. (However,
some approaches to project governance assume a Waterfall approach
and will need updating if the full benefits of Agile are to be realized.)

Agile Demystified 28-Jul-09

(c) Allan Kelly – allan@allankelly.net Page 5 of 18

Figure 2 - Cash flow for an Agile project

Figure 1 and Figure 2 are generalized examples; both make similar
assumptions about cost (£50,000 per month) and benefits (final
benefit of £2m). With a discount rate of 5% per annum this yields an
net present value of £1.318m for the Waterfall project shown in
Figure 1 and a slightly higher NPV £1.354m for the Agile project in
Figure 2.

The added value is shown more explicitly by
an internal rate of return of calculation.
Here the Waterfall Figure 1 has an IRR of
20% but, because benefits start flowing
sooner, the Agile Figure 2 has an IRR of
100%.

These calculations make no allowance for
improved productivity or higher quality that
should also result. Thus the true value may
be higher still.

Applicability
Agile methods are widely applicable. Most organizations producing
software can adopt Agile methods. A better question to ask is: when
is traditional Waterfall development applicable?

Agile Demystified 28-Jul-09

(c) Allan Kelly – allan@allankelly.net Page 6 of 18

Waterfall development depends on fixing requirements early in the
cycle. Once requirements are fixed then analysis proceeds. When
analysis is complete design can proceed and complete before coding
starts. Coding is usually the longest phase followed by testing. Thus
delay in fixing the requirements delays all stages of the project while
changes to the requirement has a significant ripple effect.

In contrast Agile methods expect requirements to change and emerge
as the project proceeds. They accommodate this phases are
overlapped by adopting a just in time approach to analysis and
design.

(In fact, while many organization claim to follow the waterfall
process-fixing requirements is incredibly difficult. Changes occur
during the entire development period. One of the difficulties faced by
teams has been reconciling the model with what actually occurs.)

At the time of writing Agile methods are most commonly used by
media organizations, Web 2.0 companies and independent software
vendors (ISVs). Agile methods have been shown to work in banks,
telecoms companies and elsewhere.

The adoption of Agile by media and Web 2.0 companies reflects their
post-millennial interest in software development. Prior to 2000 media
organizations had little need to develop complex applications to
support their core business. The development of such applications by
media and Web 2.0 companies started to occur around the same time
as Agile methods emerged. With no legacy development processes it
was natural that these organizations adopted Agile.

The lack of a legacy code base and practices makes the adoption of
Agile easy for these companies. For organization which already have
established application development teams adopting Agile needs to be
viewed as a change programme.

Major users of Agile methods include IBM, the BBC, Sky TV (the
European equivalent of Fox in the New International portfolio), Nokia
and Yahoo. Other organizations having pockets of Agile development
include Google, Hewlett-Packard and Schlumberger. Many bank are
experimenting with Agile methods and at least one large UK
investment bank is moving towards widespread adoption.

Many of the practices found in Agile methods were to be found in the
ISV community prior to the appearance of Agile, XP, Scrum or any of
the other methods. Unlike companies which develop software to
support their real business, ISVs live or die by their ability to create
software products. Therefore there were already using many of the
best practices which became Agile.

Still, there are many ISVs which could benefit from Agile methods and
many more which could add to their already good practice with
additional techniques.

Agile Demystified 28-Jul-09

(c) Allan Kelly – allan@allankelly.net Page 7 of 18

Multitude of methods and terms
As with other branches of IT the Agile movement has a plethora of
terms, methodologies and abbreviations: XP, Scrum, DSDM, Crystal,
FDD, etc. (A longer list is contained in the glossary below).

Figure 3 shows how the methods and terms fit together. In each
methodology there are some specific practices and routines, some are
more prescriptive than others. In addition, each methodology brings
its own philosophy, concepts and values.

The most prescriptive of all the Agile methodologies is perhaps the
first edition of Extreme Programming, XP for short (Beck, 2000).
Although Beck outlined some principles and values the original
description was highly prescriptive. In the second edition (Beck and
Andres, 2004) the prescriptive element was reduced with a greater
role values and principles over practices.

Still XP is just one of several Agile methodologies. While Crystal Clear
is less prescriptive than most it is still specific, as are Scrum and
DSDM.

Figure 3 - How the Agile methods fit together

Agile as a whole is both an umbrella term to group all these methods
– which were originally called lightweight methods – and a toolbox.
While the Agile toolbox contains many prescriptive practices the
toolbox user is left to select which tools to use. Consequently
concepts and values are more important.

Lean, and specifically Lean Software Development, could be viewed
as another Agile methodology similar to XP or Scrum. However, Lean
is more concerned with how companies and teams improve and
adapt. Although it has specific practices – like value stream mapping
– these are concerned with process improvement. Lean is not so
much a methodology of working as it is a method for improving
working practices.

Agile Demystified 28-Jul-09

(c) Allan Kelly – allan@allankelly.net Page 8 of 18

From this perspective Agile is an application of Lean thinking. Many
ideas from Lean manufacturing, such as just in time production and a
quality is free ethos underpin the Agile approach.

One of the originators of the term Lean, Professor Dan Jones, stated
at the XP Day 2008 conference in London that he saw no difference
between Agile and Lean. For most purposes it is reasonable to
consider Agile software development to be the software industry’s
version of Lean product development.

The original description of Lean came from the motor manufacturing
production line (Womack et al., 1991) which might make it seem
unsuitable for the more abstract work of the software engineer.
Elsewhere it has been shown how Toyota – and others – have applied
Lean principles to product design and development (Kennedy, 2003,
Cusumano and Nobeoka, 1998) while Mary and Tom Poppendieck
have applied the ideas directly to software development (Poppendieck
and Poppendieck, 2003, , 2007).

Finally, under pinning all of these techniques are the ideas of
Organizational Learning and the Learning Organization (Senge, 1990,
de Geus, 1997, Argyris and Schön, 1996, Kelly, 2008). While
organizational learning can be a somewhat academic subject it
explains how these techniques work and offers insights into how to
manage the processes.

Test of Agile
Because there is no single source for Agile, and because there are so
many variations on Agile itself it is increasingly difficult to know if a
team is, or is not practicing Agile. One approach is to simply look at
the practices described by Agile methods and examine whether a
team is using them.

However this approach measures what is done rather than outcome
so is less that satisfactory. Indeed it is likely that in a few Agile
practices can be found in any development team.

Consultant Bas Voode invented a simple test for teams at Nokia to
assess their adoption. This test asks two questions, each with several
conditions:

1. Are you doing Iterative Development?

• Iterations time-boxed to less than 4 weeks

• Features tested and working at the end of each iteration

• Iteration starts before specification is complete

2. Are you are doing Scrum?

• You know who the Product Owner is

Agile Demystified 28-Jul-09

(c) Allan Kelly – allan@allankelly.net Page 9 of 18

• There is a product backlog: Prioritized by business value, with
estimates created by the team

• Team generates burn-down charts and knows velocity

• No project managers (or anyone else) disrupting the work of the
team

This author proposes a more general test:

If a team can answer yes to the following questions it may be
considered to be Agile:

• Is the team responsive to customer needs? Is it delivering
business value?

• Is the team continually learning and improving? Specifically: the
team should be changing the way it works as a result of its own
learning over time.

• When the change agent – e.g. project leader, consultant - is
removed does the team continue working Agile? Or does it fall
back to the prior norms?

The ultimate test is not Is the team Agile? but Is the team serving the
business? Too often IT becomes the block to organization agility and
change.

How Agile works
All Agile methods, XP, Scrum, Crystal, etc.
work by shrinking the development cycle
and repeating it frequently. Each cycle is
called an iteration or sprint and lasts
between one and four weeks. New
software may be released at the end of a
single iteration or after several.

In effect they take bite-sized chunks off the
problem rather than try to tackle it all. The result is a series of mini-
projects in rapid succession. In order to do this the team need to
reduce both the set-up time for a cycle and curtail the closing phase.

The set-up period is reduced by close customer involvement – where
the customer may be an actual customer, a customer-proxy, a
business analyst or a product manager – and rigorous prioritization.

In any one iteration the team is closely focused on a few high priority
items. These will be completed in the iteration thereby allowing new
prioritizes to be set for the next iteration.

Most software projects end with a test-fix-test cycle which is of
indeterminable length. To avoid this, and thus shrink the closing
phase, Agile methods adopt a quality is free approach and institute a
number of techniques for boosting quality throughout the

Agile Demystified 28-Jul-09

(c) Allan Kelly – allan@allankelly.net Page 10 of 18

development cycle. Techniques such as Test Driven Development
(TDD), pair programming, automated acceptance tests and
continuous integration help keep code quality far higher than on
traditional project.

The net result is to remove the indeterminable test-fix-test cycle.
When done right projects are always in a releasable state. This
allows the mini-project to close on time with a deliverable.

Additional techniques are used to allow the project to cope with
system architecture, maintainability and long range planning.

Agile myths
A number of myths have grown up around Agile. Some stem from
the developer centric origins of Agile while others mistake the lack of
traditional processes and artifacts for a lack of rigor.

One of the criticisms that has incorrectly been levied at Agile is that it
is chaotic. In fact Agile is a high discipline process: it demands
attention to technical quality, regular communication and planning.

Unfortunately, some teams that are chaotic excuse their behavior by
claiming they are “Agile.” Developers who refuse to show progress,
demonstrate working code, write unit tests or listen to what the
customer wants are not Agile. Such teams are taking advantage of
the ignorance of others about Agile to excuse them from
professionalism.

Another myth is that Agile is anti-documentation. Agile projects
produce as much, or as little, documentation as is requested.
However Agile teams do not produce documentation for the sake of
documentation.

Others have questioned Agile applicability to safety critical systems.
Again this is a myth. In some ways Agile is more suited to safety
critical applications because of the continual emphasis on working
code. In healthcare, pharmaceutical, embedded and elsewhere, there
are Agile teams working on safety critical application.

Similarly it is untrue that Agile prohibits distributed teams. Like other
methods Agile has a strong preference for co-located teams but
dispersed Agile teams exist and successfully deliver.

Yet another myth is that Agile is only applicable when the developers
are highly experienced. Project with highly experienced and skilled
developers have an obvious advantage but Agile methods have been
shown to work with average staff.

Similarly, it has been claimed that Agile is only suitable for new
development, that it is not suitable for existing legacy applications.
While it is true that legacy applications present their own challenges it

Agile Demystified 28-Jul-09

(c) Allan Kelly – allan@allankelly.net Page 11 of 18

is not true that Agile cannot be used for such work. Indeed, the basic
Agile approach has its roots in application maintenance.

What is not Agile
The success of Agile in recent years has resulted in a number of
suppliers claiming their products, tools and services are Agile. This
makes it more difficult to know what is Agile, and what is not.

• SOA (Service Oriented Architecture), MDA (Model Driven
Architecture) and Virtualization are not themselves intrinsically
Agile. An Agile project may use, or even deliver, SOA, MDA or
Virtualization but the use of any (or all) of these techniques on a
project does not make a project Agile by itself.

• Web 2.0, SaaS, (Software as a Service), AJAX (Asynchronous
JavaScript and XML), REST, Mash-ups: Again, such technologies
may be used by an Agile project, or they may not. Their presence
does not make a project Agile or prevent it from begin Agile.

• Test First or Test Driven Development is a key Agile practice but
not sufficient alone enough to make a project Agile.

• Pair Programming: Extreme Programming (XP) suggested that
programmer work in pairs, a little like airplane pilots. This idea has
some very vocal supporters but it has even more vocal opponents.
Unfortunately the debate about XP or Agile in general, often gets
bogged down in a discussion of pairing. If a team is willing to try
pair programming great, try it, if not accept it and move on.

Failures
Agile is no a guarantee of project success. All IT
projects, and especially application development,
entail risk. If a project was risk free it is unlikely
to provide significant benefits or competitive
advantage. What Agile can de-risk projects and
increases the return. Companies may take these
benefits or choose to increase the risk in other
areas.

There are however, a number of ways in which
Agile projects repeatedly fail which are worth examining:

• Wagile: a team which continues to follow a basically Waterfall
project but uses the language of Agile and adds a few of the
artifacts or practices. For example, the team may present
burndown charts together with Gantt charts.

• ScrumBut describes a team which claims to follow Scrum but
misses various practices; for example “We do Scrum but we don’t
have a Product Owner” or “We do Scrum but the Project Manager

Agile Demystified 28-Jul-09

(c) Allan Kelly – allan@allankelly.net Page 12 of 18

allocates tasks.” Such teams normally have a long list of “buts”
and show little progress of removing them.

• Hitting The Scrum Wall: The most popular Agile method at the
time of writing is Scrum which is a project management technique.
Scrum is normally used with a number of other Agile techniques,
typically User Stories and the technical practices from XP (TDD,
refactoring, continuous integration, etc.).

Teams that adopt Scrum project management initially see an
improvement in productivity and customer satisfaction. However
without the technical practices quality is low and the team hit the
wall. The quality gap makes it impossible to maintain the pace in
the long run.

• Fake Agile: this occurs when a team declares itself Agile and
blames everyone else for their failure to interact correctly with the
group. Such a group typically stops writing documentation,
listening to business analysts, product managers and other
customers, dictates its own delivery schedule. Meanwhile the team
do not improve quality, does not adopt test driven development or
any other practice they dislike.

• Potemkin Agile: occurs when a team adopts and applies an Agile
method well but does not deliver business value. This is a form of
goal deferment were the team consider adhering to the process
rather than delivering business value as the success criteria.

• Customer (Business Analyst, Product Manager, Product
Owner) overload: on a well functioning Agile project the
customer, or proxy customer, is called upon to do a lot. They need
to decide requirements, set priorities, scout ahead of the project,
align strategy, work with the developers, testers and managers,
and may even have their own day job to do. In the earliest XP
project (“C3”) the first business analyst came close to a nervous
breakdown. Such overload is a sign that a project is functioning
well but also a limitation.

• Fall back: management may bring in consultants and other
experts help switch a team to Agile. When the consultants leave
some teams return to their old ways of working. Advisers and
consultants can be a great help when introducing Agile but they
need to build capacity in the development team to continue
learning and evolving when the consultants are gone.

• Failure to go far enough: To maximize the benefits of Agile
Software Development the people, processes and organization that
interface and work with the Agile team need to understand Agile
and adjust their expectations and working techniques too. Agile is
not a drop-in technology that can be swapped in to replace another
failing method. Isolated Agile teams will find it difficult to be

Agile Demystified 28-Jul-09

(c) Allan Kelly – allan@allankelly.net Page 13 of 18

completely Agile. When other groups adapt the benefits of Agile
can spread beyond Software Development.

• Exploding cards happens when teams do not sufficiently
understand the technology they are working with – either in the
solution or problem domain. As a result small work packages turn
out to be large tasks in their own right.

• Hyper changing requirements: With the exception of Kanban,
most Agile methods, especially Scrum, hold the iteration goals fixed
for a few of weeks. Most businesses should be able to hold to
goals for such short periods of time.

If it proves impossible to hold requirements and goals fixed for
even one week then something is wrong. In a few cases the
business is genuinely changing extremely rapidly. When this is the
case teams are better off using Kanban style management than a
Scrum based approach.

More often hyper change in goals and requirements are a sign that
something is wrong beyond the team. The organization itself may
lack strategy and objectives, or the Product Owner may not be
filling their role adequately.

• Fragile not Agile: some of the Agile techniques, like TDD, when
poorly applied with a lack of understanding can show short term
benefits but create long term problems.

Few of these failure modes are unique to Agile; they are reoccurring
failure modes for all IT software development projects. Neither is this
a comprehensive list of the ways in which Agile, or any other
application development, project can fail.

Where to begin
There is more to adopting Agile than simply
declaring a team Agile. Neither managers
nor developers can impose Agile by decree.
Adoption is a learning process.

Ideally the adoption of Agile methods should
be a pincer movement: Management should
provide top-down support for adoption by
way of training, consultants, and a wiliness
to change themselves. Software development teams should launch a
bottom-up initiative to change their own practices and methods of
working. Both sides need to engage in shared learning.

Managers who wish to see their teams adopt Agile need to do more
than just evangelize the techniques. They need to provide teams
with the tools and resources they need to change. They also need to
involve themselves closely with the change initiative by listening to
developers.

Agile Demystified 28-Jul-09

(c) Allan Kelly – allan@allankelly.net Page 14 of 18

It is not necessary to choose in advance which methodology to adopt.
Each organization has its own needs, problems and demands. No off
the shelf methodology will address the corporation’s needs exactly,
instead teams need to create their own methods from the available
techniques to match their problems. This approach has the added
benefit in that it will seed the creation of the learning culture needed
for improvement in the longer term.

Organization can, and do, adopt Agile methods without external help
however this is a slow and risky process. For faster adoption it is
advisable to use the services of an Agile Coach to navigate the
adoption process and guide the teams. Training in Agile methods and
technical training – especially in TDD – is essential to embed a
common understanding of the approach and skills required.

On the whole developers are keen to adopt new methods and try
Agile. Management needs to work with this enthusiasm rather than
impose top-down process change.

If you would like to know more about Agile Software Development,
how your organization can benefit from becoming more Agile and
how to migrate to Agile please contact the author, Allan Kelly on +44
773 310 7131 or allan@allankelly.net.

About the author

Allan is a regular conference speaker and
contributor to publications on the subject
of Agile development and improving
software development. His first book,
“Changing Software Development:
Learning to be Agile” was published by
John Wiley & Sons in 2008.

Allan holds BSc degree in Computing and
an MBA in management. He has
experience both as a development

manager and as a software developer. He is a trained product
manager and project manager – holding PRINCE2 Practitioner status.

Allan currently works as a consultant and trainer
helping companies organize their software
development activities and adopt Agile. He can
be contacted at allan@allankelly.net and his
personal website is http://www.allankelly.net.

Agile Demystified 28-Jul-09

(c) Allan Kelly – allan@allankelly.net Page 15 of 18

Glossary of Agile terms
AD Application Development

ASD Agile Software Development

Automated Acceptance
Tests

Tests written by the Product Owner, perhaps with
a Tester, which can be automatically run against
software and systems. These form part of the
program specification.

Blue-White-Red An example Agile system by the author which
combined elements of Scrum with XP (Kelly, 2007,
Kelly, 2008).

Coach Agile teams often include an Agile Coach. The
Coach has a key role to play during the transition
to Agile methods but is also responsible for
helping the team reflect and improve their
practices in the longer term.

Continuous Integration The practice of integrating new source code as
soon as it is complete and running system builds
and unit tests many times a day.

Customer (Onsite
Customer, Product
Owner)

XP mandates that each development team work
closely with an Onsite Customer, Scrum fills the
same role with a Product Owner. These roles are
usually staffed either by an actual customer, a
Business Analyst or a Product Manager.

Crystal

Crystal Clear

Crystal Orange

Crystal Red

A family of methods from Alistair Cockburn.

DSDM Dynamic Systems Development Method: a
technique developed in the UK by the DSDM
Consortium. This method has its roots in
Government projects. Initially the use and
documentation of this method was only available
to DSDM consortium members, this has changed
recently and DSDM Atern is freely available.

As with Scrum some DSDM training leads to
certification which is controlled by the consortium.

DSDM Atern A new methodology from the DSDM consortium
which is freely available.

EVO Evolutionary project management from Tom Gilb.
Sometimes called the “Grand Farther of Agile

Agile Demystified 28-Jul-09

(c) Allan Kelly – allan@allankelly.net Page 16 of 18

methods”, Gilb and EVO have been around longer
than other methods (Gilb, 2005).

EVO enthusiasts claim it covers aspects of
development not covered by other Agile methods
and can be usefully combined with Scrum and XP.

FDD Feature Driven Design a methodology from Jeff
De Luca and Peter Coad.

Iteration A short period of time during which work is
performed. Iterations are “time boxed” in that
they have a defined start and end, and all
iterations are the same length. Work is then sized
to fit the iteration time box.

Kanban The newest Agile method: introduced by David
Anderson about 2007 Kanban draws more directly
on the ideas of Lean. Unusually for an Agile
method the most advanced Kanban teams do not
use time boxed iterations or give estimates. (The
term “Kanban” has a specific meaning in Lean and
its use to name a method causes a little
confusion.)

Lean Derived from the Toyota Production system as
described in “The Machine that changed the
world” by Womack, Jones and Roo.

Lean Software
Development

The application of Lean manufacturing and
product development the software field. Most
closely associated with Mary and Tom
Poppendeick.

Organizational Learning A branch of management theory concerned with
understanding how organization learn and
change, and how this can be used to inform
operations and strategy. Most closely associated
with writers like Peter Senge, Arie de Grus and
Chris Arygis.

Product Owner The team member responsible for determining
what needs doing and prioritization. Role is
usually filled by a Business Analyst or a Product
manager, in corporate IT departments and ISVs
respectively.

Refactoring A technical practice used by Agile teams to
improve the design of the software as they work
on it.

Scrum A methodology developed by Ken Schwaber and
Jeff Sutherland. “Scrum” does not stand for

Agile Demystified 28-Jul-09

(c) Allan Kelly – allan@allankelly.net Page 17 of 18

anything, it is a reference to game of Rugby.

The Scrum Alliance certifies Scrum training in the
areas such as Scrum Master and Scrum Product
Owner.

Scrum focuses more on project management
while XP is more concerned with developer
practices. This makes it natural to use elements
of both together, as in Blue-White-Red (see
above).

Scrum Master Scrum defines a new role of Scrum Master which
is designed to help the team over come obstacles
and improve. In part the Scrum Master is an Agile
Coach. While many organizations see the Scrum
Master as a Project Manager this is not how the
role is defined. The juxtaposition of Scrum Master
as Project Manager can itself create tension.

Sprint In Scrum: Iteration, or a collection of several
iterations which make up a release.

TDD - Test Driven Design

Also known as: Test First
Development, Example
Driven Design

Test Driven Design – originally part of XP, now a
technique widely used in its own right.

XP Extreme Programming – a methodology from Kent
Beck (Beck, 2000) with Ward Cunningham
(Cunningham, 1996) and Ron Jeffries. XP was
initially the leading Agile methodology. This
position has now been assumed by Scrum.

Graphics: Graphics taken from iStockPhoto, figures authors own
work.

Agile Demystified 28-Jul-09

(c) Allan Kelly – allan@allankelly.net Page 18 of 18

References

ARGYRIS, C. & SCHÖN, D. A. (1996) Organisational Learning II, Addison-
Wesley.

BECK, K. (2000) Extreme Programming Explained, Addison-Wesley.

BECK, K. & ANDRES, C. (2004) Extreme Programming Explained: Embrace
Change, Addison-Wesley.

BENEFIELD, G. (2008) Rolling Out Agile at a Large Enterprise. Hawaii
International Conference on Software Systems. Big Island, Hawii.

CUNNINGHAM, W. (1996) EPISODES: A Pattern Language of Competitive
Development. IN VLISSIDES, J., COPLIEN, J. & KERTH, N. L. (Eds.)
Pattern Languages of Program Design. Addison-Wesley.

CUSUMANO, M. A. & NOBEOKA, K. (1998) Thinking Beyond Lean, Free Press.

DE GEUS, A. P. (1997) The Living Company, Nicholas Brealey Publishing.

GILB, T. (2005) Competitive Engineering, Butterworth-Heinemann.

GLAZER, H., DALTON, J., ANDERSON, D., KONRAD, M. & SHRUM, S. (2008)
CMMI or Agile: Why Not Embrace Both! Hanscom AFB, MA, Software
Engineering Institute

KELLY, A. (2007) Blue White Red - an example agile process. ACCU Overload.

KELLY, A. (2008) Changing Software Development: Learning to Become Agile,
John Wiley & Sons.

KENNEDY, M. N. (2003) Product Development for the Lean Enterprise,
Richmond, VA,, Oaklea Press.

POPPENDIECK, M. & POPPENDIECK, T. (2003) Lean Software Development,
Addison-Wesley.

POPPENDIECK, M. & POPPENDIECK, T. (2007) Implementing lean software
development : from concept to cash, London, Addison-Wesley.

SENGE, P. (1990) The Fifth Discipline, Random House Books.

WOMACK, J. P., JONES, D. T. & ROOS, D. (1991) The machine that changed
the world, New York, HaperCollins.

