
A Guide to Iteration Planning meetings

By Allan Kelly, allan@allankelly.net, http://www.allankelly.net

This guide is intended to accompany the Iteration Planning Sheet.

Visit http://www.softwarestrategy.co.uk/dlgsheets/planningsheet.
html to download a sheet or to buy a printed sheet.

One of the things I enjoy about my work as an Agile Consultant is visiting
teams and observing iteration planning meeting. If you’ve never observed
another team’s planning meeting, or if you’ve never seen one, you might
expect that they are fairly similar. Indeed they are but, as is so often the case,
the devil is in the detail. I am routinely surprised by the ability of teams to
interpret, find and invent different ways to doing things in the meeting.
Take for example deciding how much work a team can undertake. Some teams
just have the product owner propose stories and they accept stories until they
feel they have “enough.” Some teams are strict in only accepting stories they
are sure they can get done - the Scrum idea of “commitment”; other teams
will take on more work than they expect to do.
Some teams will use velocity to judge how much they can do. They determine
how many points they can do and accept stories up to that limit - give or
take a bit. Some teams set the upper limit by simply looking at how many
points they did last time and rolling that forward. Some teams play planning
poker to decide how many points they can do. Some teams think about who’s
on holiday, who’s not, who was ill, what got in the way and a million other
things.

1

mailto:allan@allankelly.net
http://www.allankelly.net
http://www.softwarestrategy.co.uk/dlgsheets/planningsheet.html
http://www.softwarestrategy.co.uk/dlgsheets/planningsheet.html

Personally I advise teams to use a rolling average of the last 4 or 5 sprints,
ignore holidays, illness and other factors that might have or will disrupt work.
Then schedule slightly more work than they expect to do. Estimates velocity
are only a rough mechanism for gauging about how much work will be done.
The team should accept enough work so they don’t run out of things to do
but they should not accept more than is reasonable to expect. Preparing
work which will not get done is wasteful.
Seeing these variations is often educational for me, and vice-versa, I sometimes
suggest to changes to team’s current practice. However it does mean that
when describing a planning meeting to someone there are a lot of details
which could be different without necessarily being wrong. Indeed they could
be better than my suggestions.
What follow is my take on a planning meeting and how it runs. This
description matches the A1 Planning Sheet I have devised for to help new
teams run planning meetings. I like to call this type of Agile “Xanpan”1 and
I hope it is close enough to both XP and Scrum to make this description and
the sheets useful for many teams.
After this description I detail some of the activities which might occur outside
of the planning meeting but which contribute to a smooth running planning
meeting.
I will also detail some variations I’ve seen. . . .

The Players
• The Product Owner: this role is usually played by a Product Man-

ager, or a Business Analyst acting as a proxy for the real customer.
On occasions the real customer might play the role. Some companies
employ Subject Matter Experts who can play Product Owner at times.
Sometimes someone else needs to play the role. Whoever plays the
Product Owner they need to do their homework (see below) and be
ready to propose stories, answer questions, prioritize and make decisions
as the meeting progresses.

While it is common practice for there to be only one Product
Owner there may be more than one. If more than one Product

1Xanpan is pronounced “Zan-pan”.

2

Owner (for the same product) will attend the planning meeting
the should agree before hand priorities and approaches.

• The Creators: Software Engineers and Testers mainly, although some-
times there are others such as User Interface Designers involved. These
are the people who will build the things the Product Owner asks for.

• The Facilitator: Sometimes there is a dedicated facilitator who is not
the Product Owner or a member of the building team. They may be,
for example, a Project Manager, Scrum Master or Agile Coach.

Some teams are too small to have a dedicated facilitator and a
developer steps into the role - in which case they wear two hats
during the meeting. Experienced teams may not need a facilitator
however inexperienced teams who lack a facilitator may find the
meetings long and difficult. Whoever plays facilitator should have
some experience of planning meetings and facilitation, they should
also have respect and authority from the team to play the role.

Usually it is not a good idea for the Product Owner to double
up as Facilitator because someone needs to watch for and resolve
disputes between the Product Owner and Developers. Plus, the
Product Owner usually has more than enough to do during the
planning meeting already.

I consider total of all the people in these roles, and possibly some more as
well, to be: The Development Team. The Product Owner and Facilitator are,
in my book, as much part of the team as the Testers and Coders.

The Artefacts

There are several artefacts, or props, which are normally used in a planning
meeting. When teams rehearse planning meetings in by training courses I
use dice to simulate the work in an iteration. In real planning meetings, and
real iterations, dice are not used.

3

• Blue Cards: Describe bits of functionality which are useful to the busi-
ness in a language the business representatives understand. These are
vertical slices of business functionality which are conceivably deliverable
on their own. Often User Story format (Cohn

2004) is used and the cards are usually created before the planning
meeting.

• White Cards: Each card describe one task needed in building the
thing described on the Blue card. White cards are normally written
during the planning meeting and there are usually multiple White task
cards for each Blue card.

• Red Cards: Bugs and other expedited items. Normally Reds are not
broken down into tasks but they are occasionally. What colour you use
for tasks related to a Red is up to you, White or Red would both be
appropriate.

• Planning board: Usually a 1.2m by 90cm magnetic white board
divided into columns. Other sizes and types of boards may be used.
While many teams use electronic tracking systems too I strongly advise
teams to initially adopt physical boards and cards and only progress
to electronic systems when they have some physical experience. Even
then both systems may be run in parallel.

• Planning poker cards: the description which follows assume the
team are playing planning poker. Not all teams play planning poker,
it isn’t compulsory so feel free to use whatever method works for you.
That said, whatever method you use should address some of the point
discussed below.

There are special sets of planning poker cards available - these
can be surprising difficult to buy but are often freely available
from Agile training and consulting companies - just ask! Different
planning poker sets have slightly different sequences.

The exact colour of the cards can vary from team to team. Keeping to the
colours outlined here does keep things consistent.

4

Some teams use additional colours to signal other types of work. One team
started using Yellow Cards to signal unplanned work, this Xanpan conven-
tion has been described elsewhere. By their nature Yellow cards will only
appear planning meeting when they are carry over work.

The Meeting Sequence

The basic format of the meeting is shown in the diagram below. The team
agree how much work they will attempt, the Product Owner presents the
work they would like done and the team work through each item in priority
order. They discuss each item, break it down to tasks and estimate the tasks.
After each item is done (i.e. discussion and breakdown has ended) the team
count up how much work they have accepted and compare this with what
they expect to do. If they have spare capacity the next highest priority item
is pulled from the Product Owner.
When the team have accepted work to their capacity they review what they
have with the Product Owner and agree any changes.

Figure 1: Basic meeting sequence

5

First meeting

The first planning meeting a team hold is always the hardest. This is when
their experience is least and the unknowns greatest, naturally it will take
longer to navigate the meeting. In the worst cases the teams lack of experience
can derail the meeting altogether should they encounter difficulties.
The first meeting is also the most difficult for another reason: the team have
no reference points. They have little idea of what they need from a story,
how long it will take to do a story, or quite what acceptance criteria should
look like. Even if they have practiced for these question during training doing
it for real life will be harder.
Significantly the team will also have no data on how fast they can go - they
will only have a vague idea of how big “one point” is or how many points
they should accept into an iteration. In my experience teams tend to accept
far more work into the first sprint than they will ever get done, they are
inherently optimistic.

Second and subsequent

Because the first meeting takes so long and over plans the work the second
meeting, two week later, tends to be one of the shortest. So much work is
carried over in one form or another the second meeting finds little to plan.
After than the meetings start to settle down. The team have two meetings
under their belt and two data points.
The format of the meeting also changes after the first meeting. At first the
meeting is entirely forward looking, subsequent meetings have a backward
looking element. Prior to the start of the meeting, or right at the start the
team will demonstrate the work done in the previous iteration. They will
then review the work done - usually count the points and update any charts.
Formally the demonstration, review and retrospective might be separate
meetings. But they are likely to be arranged back-to-back, perhaps with a
short break between each. So whether one regards them as one long meeting
or several shorter meetings is debatable.
The demonstration used to be an essential part of the end-of-iteration/start-
of-next when teams only delivered at the end of iteration - or after several

6

iteration. As more teams move to continuous delivery it is worth questioning
whether the demo adds anything if people can already use the software for
real.
Teams may also hold a retrospective as part of the iteration end routine.
Although not all teams hold retrospectives and even those who do may not
hold them every iteration.
The schedule of the second and subsequent meetings is something like the
diagram below.

Figure 2: Subsequent meeting sequence

In the second meeting the team have a rough idea of how many points of
work they can accept because they can sum up the points completed in the
previous iteration. In the third meeting they have a better idea because they
can average points from two iterations. By the fourth meeting the average
is fairly accurate plus they have reasonable high water (best case) and low
water (worse case) marks to guide their capacity thinking.
These meetings should happen regularly at the end/start of every iteration -
typically every two weeks. They can be schedule in everyone’s calendar and

7

room bookings made months in advance. Indeed if you are using an electronic
scheduling system (e.g. Microsoft Outlook) you can set up a reoccurring
meeting with no end date.

The Planning Game

Product Owner(s) presents to the team the Blue (business facing) stories they
wish to have developed. These are presented in absolute priority order – 1,
2, 3, 4, etc. No duplicate priorities are allowed, i.e. there can be only one
priority one, one priority two and so on.
If two items are deemed to be of equal priority (e.g. two cards are both
assigned priority three) by the Product Owner then the development team
are allowed to decide the ordering. If the Product Owner disagrees with the
ordering then they have, by their disagreement, determined the ordering. In
general it is considered an abdication of responsibility if a Product Owner
does not guide the team in prioritisation.
Each Blue card is broken down by the development team to a set of White
technical tasks. Blues are the domain of the Product Owner, Whites of the
technical team. The break down is partly an act of design, partly an act of
requirements elaboration and partly an act designed to produce the smallest
practical work items. (I will discuss the breakdown in more detail later.)
Of course sometimes only one White is needed to create one Blue, in these
cases the White is omitted and the team can work directly at the Blue level.
In some ways this represents the idea scenario, however, for this to work the
Blue must be no bigger than one White, i.e. if the Blue can be broken down
to multiple Whites then it should be so.
The breakdown is a co-operative process between development team and
Product Owner – both should be present. There should be conversation
between both sides: developers should ask about the requirements in detail,
Product Owners may promote white cards to blue cards if they think the
task itself has business value, product owners can remove technical tasks if
they want – even against the advice of developers although in general the two
sides should strive for consensus.
When White task cards have been broken out those who will be responsible
for undertaking the work - i.e. development team, all developers and testers

8

but not the Product Owner – estimate the work in terms of Abstract Points
using Planning Poker. (See discussion below).
Teams track velocity on a rolling-average over the few iterations. Unlike in
financial services, past performance is considered a good indicator of future
performance, or at least of the next iteration. (This is the concept XP called
“Yesterday’s Weather.”)
Once the White task cards are estimated and enough points of work are
accepted into the iteration up to the slightly more than the average velocity,
i.e. the more work is schedule to be attempted than is excepted to be achieved.
This does not mean a team would stop breaking a Blue down part way
through. Once breakdown has started it makes sense to see it through to
the end; although the Product Owner could pull the Blue out (and perhaps
substitute another) when it became clear there was a lot of work. There is
no hard and fast rule but it makes little sense to plan out the first tasks for a
Blue but the order in which tasks are done does not necessarily correspond
to the order in which they were identified and written on Whites.
The team may, or may not, achieve all the scheduled work, they may perform
below of above velocity in any given iteration. If the team do more then
expected than the work is available and over time the average will rise.
Conversely, if the team find the iteration harder than expected then less will
be achieved and the average will fall.
If a particular task or feature must be achieved within the iteration it should
be scheduled first and within the minimum recent velocity, low-water mark.
This does not guarantee the work will be done but provides a very high
probability. Teams are advised to track the time it takes for cards to traverse
the tracking board and develop statistically reliable averages and deviations
to replace the planning poker estimation process.

Testing

Different teams handle testing in different ways. Some teams have professional
Testers and formal test processes while some teams have neither. And the
level of automated testing is widely different between teams.
White cards are generally not testable by professional Testers. They should
be tested by developers using Automated Unit Tests and other tools to ensure

9

they are acceptable. If there is something a Tester could test they may well
be involved.
Generally professional Testers work at the Blue card level. In work breakdown
a team might write a White task card to test the Blue. This would only be
done once all the Whites were done and the whole Blue was ready to test.
Although Testers may prefer to write two task cards: one to write the test
script and one to execute the test. If the former is fully automated the latter
need not exist or will happen automatically.
Other teams forgo tasks associated with testing and instead model tests via
their task board. As cards move across the board they will need to pass
through test columns were the testing will happen. Thus completetion of all
the White cards associated with a Blue would trigger the move of the Blue
into a testing column and testing to commence.

Trivia and Spikes

Truly trivial tasks, or work to be undertaken by people outside the teams
may be assigned zero points. Such zero point cards represent work that the
team needs to keep track of but does not represent noticeable work for the
team. For example, a “Buy domain name” task would probably merit a zero
point score as it would take about 10 minutes. But a task reading “Obtain
quote for domain name, seek approval to spend money, buy domain name,
file expenses claim” may warrant an estimate larger than zero.
Spike cards are written when the development team feel they do not have
enough knowledge 0 usually technical knowledge - to begin a breakdown and
estimate. Here a “Spike” card will be written to attempt the work but once
the work is done it will be thrown away, “spiked.”
The objective of a spike card is gain an understanding of what needs to
be done. Typically the output from a spike will be a set of (White) cards
describing the tasks which need to be done. Ideally these cards will be held
until the next planning meeting where they can be discussed, estimated and
scheduled, or deferred.
Sometimes when time is pressing the resulting cards might be estimated and
scheduled into the iteration immediately. While this is entirely practical

10

is does mean forecasts for what the iteration will produce are difficult or
impossible.
Spikes are not estimated the same way other cards are estimated. Rather
they are hard time-boxed. An amount of time is decided on and written on
the card. This time, no more, no less, is the time allowed for this card. When
the time is up research work must stop and the task cards written using the
knowledge gained.
Working in time - as opposed for points - for spikes makes velocity calcula-
tions more difficult. Some approximate, rule-of-thumb, back-of-the-envelope
calculations need to be done.

Counting Done

In the review part of the meeting the work completed in the previous iteration
is removed from the board and reviewed. The main part of this review is
simply counting the points done and updating any charts or other tracking
systems. The review may also take time to examine any cards left on the
board and decide whether they should be left as carry over.
As already mentioned the estimated points on completed Whites are counted
as part of the teams iteration velocity. Only 100% completed Whites are
counted.
Anyone who has worked with software teams for more than a few years will
have seen the “80% done” scenario where a piece work remains 80% done for
80% of the time allowed. Therefore no matter how much a Developer begs
“It is 95% done” incomplete cards are not counted.
In software development we have no way of objectively telling what is 95%
done and what is 9% done. We have no way of knowing if an unexpected
problem lurks in the final 5% or if someone will go ill before the day is out.
Teams are encouraged to adopt a Definition of Done to help with defining
what is Done and what is Not Done.
Some see it as odd that I allow Whites to be counted even when Blues are
not. “But the business functionality is incomplete” they say, “and its the
business need that counts.” This is reasonable - and certainly follows the
rules of Scrum - but I find it leads to less predicability in the process and
improves flow.

11

Another reason for applying these rules it to set up a small incentive for
people to complete work before the end of iteration review and thus score
more points. This adds a little extra motivation.

Velocity and currency

Velocity is a measure of how fast a team are working, or rather, how much
work they are getting through. It is calculated by counting the points a team
scored (i.e. completed) in the previous iteration.
Over a series of several iteration, say four, a team should be able to come up
with a rolling average, a high and a low water-mark which can be used form
planning purposes. For example, consider the team shown in this graph:

Figure 3: Velocity and rolling average

This team scored: 5, 15, 8, 9, 9, 10, 16, 12 and 8 points in the nine iterations
shown here. At the end of iteration 4 the team could calculate a average of
the last 4 iterations, this could be rolled forward at the end of each iteration
giving rolling averages of: 9.25, 10.25, 9, 11, 11.75 and 11.5.
I would advise the team to plan for 12 points of work (because their recent
average is 11.5) but accept 16 or 17 points worth - up to their recent high-water
mark. Those in the planning meeting will be aware of the possible outcomes
but for those outside the meeting there needs to be some management of
expectations.

12

It is pretty much certain the team will achieve the first 8 points worth of
work. The team might get points 9 to 12 done, or they might not. If they are
very lucky they will do points 13 to 16.
If someone needs to know how much time the team spent on a particular
task then it is simply a question of maths. Assume there five developers
employed for 40 hours a week in the previous example. That is 200 hours
of work producing on average slightly more than 11 points of work, so each
point took on average a little over 18 hours, thus a two point card took about
36 hours.
I would prefer not to make this calculation too well know because once it
entered general knowledge it would undermine the points system. I would
also prefer that this calculation was regularly updated since, as shown in the
table, the averaging changes.
It is vital to note that points float. Like the US Dollar, Euro or Pound
Sterling, points are a currency and change their value over time. Each team
has its own currency which is not directly transferable to another team.
As with currencies and other economic indicates setting targets for velocity
can create problems. Goodhart’s Law applies, if a team try and target a
certain number of points they will meet their goal but they may not do any
more work. Such teams exhibit inflation in estimates, exactly as with financial
inflation the numbers are bigger but the value less.

Carry over work

For a strict Scrum team there is no issue of work carry over because teams only
commit to work they guarantee will be done and thus all work committed to is
done. While many Scrum teams find carrying work over from sprint-to-sprint
and anathema I advise teams to carry over work. Indeed, carrying over work
to improve flow is a central feature of Xanpan and is discussed in my writing
on Xanpan process.
For Xanpan and other teams work carry over is a fact of life. As part of the
review process preceding the planning meeting the team should look at the
work remaining on the board from the closing iteration and decide which, if
any, work will be carried over to the next iteration.

13

When work has not started on a Blue and associated Whites the Product
Owner may decide to pull the card completely or roll the whole thing over.
Assuming they roll it over it will need to be prioritised against the new Blues
being added. That is to say: just because a Blue is rolled over does not give
it special priority.
When some task associated with a Blue have been done and some tasks have
not the situation is more complicated. While the Product Owner may still
pull the Blue or assign it a low priority it probably makes more sense to finish
work which has been started, and finish it soon, rather than leaving it in a
partially done state.
There may also be engineering reasons why the Blue should be taken to
completion before anything else. For example, some of the new Blues may
involve the same areas of code.
In a few cases work is incomplete because after it began more tasks came to
light. While I do not allow teams to change estimates on Whites once they are
accepted into an iteration the team may write new Whites for additional work
which emerged. They may even estimate and begin work on these Whites
during the iteration if needed be. Although I prefer it if new work can be
held until the planning meeting where it can be discussed, prioritised and
scheduled by the team.
Obviously this approach raises the possibility of never ending work, Blues
which are never done. Senior Team members need to be watchful for this and
work to diagnose the underlying issues causing it.

Ball-park estimates

When the team has finished breaking down Blues to Whites, and when the
work for the next iteration has been agree, and if time allows, then the team
may undertake some longer range estimates. I usually call these estimates
“Ball park” estimates but perhaps that is too American a term, “Rough
estimates” might be a better term but this itself has been abused over the
years.
Once all the work is decided the Product Owner may present some Blue cards
for Ball-park estimation. These may be cards which have recently been added

14

to the backlog or ideas which have been suggested recently. Or they may be
existing Blues the PO is considering for a future iteration.
Ball-park estimates are made on Blue cards without any breakdown. Discus-
sion is kept general, specifics are, as far as possible, ignored, and generally
these estimates are significantly higher than those found on Whites.
It is vital to remember that Blue ball-park estimates are exactly that: esti-
mates. They are for guidance only.
Ball-parks are not commitments, they are not accurate, they are not specific.
They are subject to change and bind nobody. When the time comes for
the Blue to be developed it will be broken down and the associated Whites
estimated exactly as above.
The sum of these task estimate supersedes any ball-park estimate. The sum
might be larger or smaller than the ball-park estimate. Indeed, if the sum of
the tasks is regularly the same as the ball-park estimates then something is
probably wrong and deserves more investigation.

How long is a planning meeting?

I would expect a well practiced team to complete a planning meeting in
half a day, my preference is for afternoon meetings. Obviously there is some
variability depending on how big the team is, how much work is being planned
and whether the team is carrying over any work, but half a day should be
enough.
The exception is the first meeting which frequently take much longer, perhaps
as much as a day. Meetings can also stretch on when Product Owners are
poorly prepared for the meeting or take issue with estimates. Design questions
can also derail meetings but on the whole most design issues can followed up
later.
A team holding a retrospective before the meeting should allow 60 to 90
minutes depending on the techniques and exercises being used. I find a
Dialogue Sheet retrospective takes 60 minutes for the sheet plus up to 30
minutes for post sheet discussion and action items.

15

Pre-Planning Meeting

Some teams move some of the activities to a pre-planing meeting, or in the
case of a the demo and retrospective even a post-planning meeting. The
difficulty with holding any meeting after the planning meeting is that any
action arising can’t be included in the iteration until the next planning
meeting. For some teams this is acceptable but in general most teams avoid
the problem by holding these meetings before the planning meeting.
Software demos are frequently held before the formal planning meeting.
However as the planning meeting represents the end of one iteration and the
start of the next holding the demo before the planning meetings creates a
gap. During this gap the team might continue working on the software in
which case the demo is not complete. More worryingly the software might
get broken in this gap. Neither issue need be too problematic provided the
demo is not held too far in advance.
A pre-planning meeting is usually an opportunity for the Product Owner to
flag up some of the stories they plan to request and get the teams feedback
before the formal planning meeting. Teams may even use the pre-planning
meeting to make ball-park estimates on Blues. As a result of the feedback
the Product Owner might rethink what they actually request in the planning
meeting a few days later.
Again there is a danger that if the pre-planning meeting is held too far in
advance then changes may render it pointless. A second danger is that teams
do too much preparation work in the pre-planning meeting and this work is
invalidated by the end of the iteration (e.g. they break down stories which
are then de-prioritised).
Since all pre-planning meeting activities eat into the time available during
an iteration to actually do work it is preferable to avoid them. However
pre-planning can sometimes be useful.

Planning Poker

Readers who have played planning poker may care to skip this section.
For those who have not come across planning poker a quick description is
appropriate.

16

Planning poker can be played with a normal set of playing cards but is more
normally played with a specially printed set numbers with an approximately
Fibonacci sequence in order to spread estimates out. I like to use a set
numbered: 0, ½, 1, 2, 3, 5, 8, 13, 21, 40, 65, 100, infinity and question mark.
The last two of these are used to flag up problems such as “That is truly
massive” or “I don’t even know where to start”.
Many training and consulting firms get planning poker card sets printed and
given away as marketing materials. In addition there are now applications
for mobile phones which can be used too. I am not a fan of such application
because I believe in keeping planning sessions both physical and interactive.
A the team may make their own planning poker cards. To do this each team
member should take several index cards (any colour) and write the following
sequence on the cards - one number per card: Half, 0, 1, 2, 3, 5, 8, 13, 21, 40,
65, 100 and question mark “?”.
To estimate a piece of work the team place the task card in the centre - easily
done when work is on physical card; if working virtually this needs to be
done virtually. If the team are unfamiliar with this card there may need to
be some discussion about what the card means. For example, if this is a Blue
business card the Product Owner may describe what is wanted. If it is a
White card then - hopefully - the card was only written a few minutes before
as a collective team effort.
Ideally during this pre-estimation discussion team members will avoid saying
“O its easy” or “That should be a six” but pointing this out is a good way to
ensure it does happen.
When the team are ready they each select a card from their playing cards,
e.g. a 5 card or an 8 card, and keep it hidden. Somebody, Project Manager,
Scrum Master, Senior Developer or just a team member, gives some kind of
lead in (e.g. “3, 2, 1” or “Ready. . . Steady. . . Vote”) and on que all team
members reveal their card.
If all the cards agree, e.g. everyone plays 3, then the estimate is accepted
and recorded on the card. If the estimates do not agree there needs to be
a second round of voting. Before re-voting someone will give an argument
for the highest estimate and someone else for the lowest estimate. Normally
only two people need to speak, one person speaking for the high vote and
one speaking for the low. Those who voted in-between remain silent, any

17

duplicate high (or low) voters don’t need to speak.
Normally this argument is a short statement of position. There is seldom
a need to engage in lengthy debate. After the two positions are given the
voting process can repeat exactly the same as before.
Hopefully on the second vote the estimates are all in agreement however this
is seldom the case. At this point different teams do different things.
After a second some teams vote will engage in a negotiation. They would ask
the low voter what it would take for them to go up and ask high voters to go
down.
Some teams I have heard of will again take positions and play a third and
even more rounds until convergence is achieved.
I advise teams to go with the majority vote (e.g. if four developers vote
8 and one votes 3 I would accept 8, in effect going with the median) or I
would go with an approximate mean average (e.g. 7). At this point I am not
concerned about the Fibonacci series, it has served its purpose and to keep
things moving fast I use all numbers. However some teams stick with the
series and will not take numbers not on the cards.
Once one story or task card is estimated the attention shifts to the next. The
intention is to keep estimation moving forward in order to estimate a lot of
work quickly.
It is important to remember these estimates are just that, estimates. The
objective of planning poker is to be roughly right rather than precisely wrong.
Coupled with velocity measures and rolling averages accuracy is gained
through metrics (averages and aggregates) over multiple estimates and work
items. Not through individually accurate estimates.
Both new teams and existing teams adopting planning poker face one trou-
blesome problem: what is one?
In order to find baseline teams should take one Blue which has been broken
down into multiple White tasks. They should examine the Whites and find
the one which looks like the least effort. This process doesn’t need to be exact
or have complete agreement. This task then becomes One. One point that is.
The team then take the next task, possible the one that looked second least
effort or perhaps another. They play planning poker on this and obtain an
effort value. The team now have two reference points and can continue.

18

When a team starts playing planning poker the value of one is very variable.
At first the team might feel a need to refer back to the baseline one. Over
time the team will gain an intrinsic understanding of what one point is, the
value will become more stable and reference back to the baseline should cease.
As the team actually do the work this understanding solidifies. Over time
the value of one point will change, the currency floats. This is perfectly
acceptable.
To draw an analogy: when someone goes to live in another country which uses
another currency they regularly calculate back to their home country, currency
and prices. This works but the same products costs different amounts in
different currencies.
When I left the UK for the USA in 2000 the exchange rate was about £1 to
$1.50. A gallon of gas (petrol) cost about $1.80 - a little over £1.20 - high
by US standards at the time but unbelievably cheap by UK standards. To
complicate matters the UK sold petrol by litres not gallons, and in a final
twist a US gallon was about 3.7L and a UK gallon about 4.5L.
After a few weeks the expatriate stops translating back and starts to think
in the new currency and reference local prices. (Holidays are seldom long
enough to fully demonstrate this effect.)
While the value of one changes teams which stay together continue to use the
same baseline as they move from story to story, iteration to iteration and
even project to project. Only if the team member change significantly do
they need to rebase one.
Finally, as a team decides what one point is, and decides what two, five, 13
and others are the team take these values as shared values. Occasionally
individuals try to use their own value system even in parallel.

Some Planning Poker theory

The theory underpinning planning poker is “Wide band Delphi” (see http:
//en.wikipedia.org/wiki/Wide_band_delphi for more about the history of
this method.) You don’t need to know that to play planning poker but it
does help to know a little of why this silly looking technique is useful:

• A psychological phenomenon known as “anchoring” leads people to rely
on the first piece of information that received more than others. Coupled

19

http://en.wikipedia.org/wiki/Wide_band_delphi
http://en.wikipedia.org/wiki/Wide_band_delphi

with social pressure to confirm this means that “O that is easy, that
should be 4 hours” people are likely to cluster their estimates around
this statement. Thus reducing the effectiveness of multiple independent
estimates.

• It been established shown that experts are no better at giving time
estimates than non-experts. What does improve estimation is to have
multiple independent estimates. (see Makridakis, Hogarth, and Gaba
2010; and Surowiecki 2004)

• Some other studies (e.g. Weick and Guinote 2010) report that the
greater an individual’s power and authority the more optimistic their
estimates. Thus we might expect a Project Manager or Architect to
provide lower estimates than Junior Developers.

• According to some researchers humans produce better estimates when
they estimate on behalf of others (Buehler, Griffin, and Ross 1994).
Rather than ask “How long do you think it will take to do X?” we
should ask “How long do you think it will take another team member
to do X?”

Why breakdown Blues?

I always advise teams to break down Blue business facing cards into White
tasks - although I often called Whites “Developer tasks” this is slightly
misleading because they could be tasks for Testers, Analysts or anyone else.
Breaking cards cards down has several benefits.
Stand-alone Blue cards should have business value themselves,
they should also be small enough to be doable in the near future,
e.g. within this iteration. These two aims can be in conflict: something which
has stand alone business value needs to bigger which means it cannot be
accomplished soon. Breaking it down thus serves two purposes: it provides
another opportunity to find small nuggets of business value and provides a
way of tracking progress on large pieces of work.
Breaking cards down also serves as an requirements elicitation pro-
cesses. The team need to discuss the Blue between themselves and with
the Product Owner - hence why I like the Product Owner to be in the room

20

during this process. This dialogue serves to flush out details, additional
requirements, assumptions and mis-understandings.
The breakdown is also a design activity because it causes the team members
to discuss how they will approach the coding of the story. For some teams this
design activity is major part of the breakdown while for others it is trivial.
Taken together the design and requirements elicitation serve to build a shared
understanding between all teams members: coders, testers and product
people. In doing so it helps identify the key value elements of the stories and
provides a forum for trade-offs to be made.
By breaking Blue stories separately before estimating of Whites the team
engage in planning the tasks free from estimation. When estimation happens
it is based on a scenario - the Whites. This forces people to think what is
involved in achieving the goal rather than the goal itself (Buehler, Griffin,
and Ross 1994; Wiseman 2009). Part of the reason for optimistic estimates is
that people focus on the goal and the desirability of achieving the goal leads
to wishful thinking.
Indeed, Wiseman advices that in setting a goal one should share it with friends
and family, break the goal down into a series of sub-tasks, and reward yourself
as your progress. This is advice match the process described here: Blues
selected and publicly stated, they are broken down collectively to sub-tasks
and as each sub-task is completed it is moved across the board and the points
scored. Because the breakdown is collective it is open and shared, moving
completed cards across the board is a public statement of success.
While Blue business cards are normally written in User Story format (As a. . .
I can. . . So that. . .) the same is not true of Whites. These are written in
whatever language and format makes sense to the team. Similarly while Blues
will typically have some acceptance criteria associated with them Whites do
not. It is up to a Developer to set their own criteria for Whites, usually using
Unit Testing.
(Because each Blue represents business functionality they may be tested by
professional testers individually. Whites are not usually testable alone by
professional testers.)
If in breaking cards down the Product Owner sees a White which they deem
to have business value in and of itself they may “upgrade” the card to a Blue.

21

If this card then need breaking down itself then it is broken down exactly the
same way.
Some teams find they do not need to break down Blues. The Blues are
themselves small enough to be worked on. This is perfectly acceptable.
Similarly some teams find that with experience they can dispense with the
breakdown to Whites. Generally I tend to find such teams work with more
modern technologies, e.g. they are building websites in PHP or Ruby. Teams
which benefit more from breakdown are working with older technologies or
are further from the user, e.g. telecom and server systems written in C++ or
Java.

Estimate in Points Not Hours

I always advise teams to estimate in points not hours. I usually use the term
“Abstract points” although some people called these “Story Points” (Cohn
2004) and several other terms are used, e.g. Nebulous Units of Time. The
important point is: Points are not hours. A point is an Unit of effort - it is
not, specifically, the amount of time it will take to do something, nor is it a
measure of complexity. It is the measure of the effort required
Some people estimate stories (Blues) in some kind of points but switch to
hours for tasks. I do not recommend this approach. As I will describe in a
moment I don’t believe humans can accurately estimate in hours. Secondly, I
see little point in using one unit of measurement for stories and another for
tasks. To my mind points are a team’s currency and using two different units
is equivalent to having two currencies in circulation.
That said I expect estimates on White tasks to be smaller than estimates on
Blue stories. When playing planning poker I expect Whites to be estimated
using the smaller numbers (1, 2, 5, etc.) and ball-park Blue estimates to use
the bigger numbers (21, 40, 65).
In 1979 two Pentagon researched published a paper describing “The Planning
Fallacy” (Kahneman and Tversky 1979) (the same authors went on to win
the Nobel prize for Economics for not entirely unrelated other work). The
planning fallacy states:

• people tend to underestimate the amount of time that work will take
to get done. This isn’t occasional or random, its systematic

22

• people are overconfident in their own predictions

• even when shown with evidence of past optimism

These findings have been upheld by multiple subsequent studies, (e.g. Zackay
and Block 2004; Buehler, Griffin, and Ross 1994). The Zachay study is
particularly interesting in that it extends the Planning Fallacy to Retrospective
Estimates, i.e. asked to state how long it took to undertake a task they have
already done an individual will still make an underestimate of the time spent.
Other studies (e.g. Buehler, Griffin, and Peetz 2010) support finding that the
past is remembered optimistically.
Around the same time Douglas Hofstadter coined Hofstadter’s Law:

“It always takes longer than you expect, even when you take into
account Hofstadter’s Law.” (Hofstadter 1980)

When asked to estimate in hours a number of additional forces come into play:
nobody wants to be considered a slacker at work, people may actively want
to disguise how much time they spend doing a task, or they may consciously
change their estimates in an effort to be assigned, or to avoid, a particular
piece of work.
But estimating in points is only half the story, to complete the story, we need
to consider the past performance of the team, their velocity. Only when both
are known can accurate time based estimate be made.
The primary reason for moving teams away from hours as an estimation unit
is to help compensate for the the planning fallacy. By estimating in points
and comparing the points to past performance uses historical data which
individuals do not.

Ideal hours

Some teams prefer to estimate in “Ideal Hours” unfortunately an ideal hour
rarely exists but using this expression itself creates misunderstanding. To
team members it is some abstract measuring unit which vaguely resembles an
hour; an ideal hour is an hour where everything went well: no interruptions,
no distractions, no unexpected surprised.

23

To those outside of the team it is an hour.
The question is: when planning work what do the team benchmark themselves
against?
If a team benchmark themselves on a standard 40 hour work week then ideal
hours need to add up to 40. if they do not then management may well wonder
what the team are doing with the rest of their contracted hours.
If instead the team benchmark against their past performance then the unit
of measurement is floating and is effectively an abstract point - by whatever
name we choose to call it.

And “Actuals”

As mentioned before humans underestimate how long it takes to do a piece
work even in retrospect. Thus the thing that many companies call “Actuals”,
i.e. how long it took to actually undertake a piece of work, is nothing more than
another estimate. Although usually this retrospective estimate is generate by
an individual rather than by a team.
To my mind the fact that an retrospective “actuals” estimate has not benefitted
from multiple independent estimates, is the product of one person and may
reflect biases in the way they work - or how often they go the toilet - renders
it a different currency. Consequently I ignore “actuals.”
The time-tracking systems used by many corporations compound the problems
with actuals. One friend of mine reports the American bank he worked for did
not allow more than the contracted 37 hours a week to be entered. And Capers
Jones points out that few systems allow “slack time” or unpaid overtime to be
entered (Jones 2008). Jones reports normal software measurement practices
seldom collect more than 80% of the true effort. For MIS projects can omit
60% of the total effort according to Jones.
In some cases managers may also encourage team members to change actuals
to match estimates. One company I saw awarded Project Managers bonuses
for the accuracy of estimates against actuals recorded. This incentived Project
Managers to ensure all team members recorded a number of hours equal to
the estimated hours.
As a consequence traditional time tracking systems can be a major source of
project risk. If time-tracking data from one development initiative is used to

24

forecast and plan a new one then the new work may immediately start with
a 20% schedule slippage, and possibly a 20% budget overrun simple because
the benchmark was inaccurate.
While I would like teams to shun traditional time-tracking systems altogether
this may not be very acceptable in some environments. I advise people in
this situation to double-think.
For work planning and estimation use points and the tools described here. For
filling in time-tracking systems forget all that and use whatever mechanism
you like. Such systems exist for the benefit of corporate accounting and have
nothing to do with sizing work.
The golden rule is: do not let the data from the time-tracking system be
used for planning purposes. These are two different currencies. Using them
together would like offering to pay a restaurant bill for $70 with a $20 and
e50 note.

Deadlines

The research mentioned above also throws up another interesting finding:
People are very good at working to deadlines. In one study (Buehler, Griffin,
and Ross 1994) the (external) deadline was met 80% of the time. This finding
had nothing to do with estimates, estimates were still too low, but it seems
people meet deadlines.
When I explain this to people I often ask a group: “How many of you did
courses at school or college which involved doing an assignment to be handed
in to a deadline set by the teach?” This is a familiar experience to most people.
I then ask: “When did you do it? How many of you did the work in plenty of
time? And how many left it to the day or night before?” Overwhelmingly
most people leave assignments until as late as possible.
When estimates are made with an externally imposed deadline people change
their estimating behaviour. In one experiment the researchers above set
two groups the same task but with different deadlines. The ones with the
later deadline provided larger estimates. Yet the extra time did not make a
difference to the actual time taken to complete the task.
While subjects in the experiment denied letting the deadline influence their
estimates the estimates were highly correlated with the deadline. Possibly

25

deadlines are imposing a form of anchoring.
Imposing deadlines - external deadlines - can be demotivating for people. In
my own experience when I have had an arbitrary deadline imposed on my at
work I am demotivated.
However this anecdote does not seem to stand up to research. It seems that
externally imposed deadlines are more effective at delivering task completion
(Buehler, Griffin, and Peetz 2010) and regular evenly-spaced deadlines are
more effective still (Ariely and Wertenbroch 2002)
The planning process described here exploits these factors in several ways:

• Estimates are kept free from deadlines.

• Deadlines are effective externally imposed and occur regularly

• Fairness is maintained because team members decide between themselves
what they will do in the time, and, over the longer term, have a say in
how regularly the deadline happens

• If a customer wants a piece of work by a particular date (and I encourage
them to think like this) then there is a negotiation with the development
team over what can be achieved in the time.

Product Owner Preparations (Homework)

One of the reoccurring reasons I see for planning meetings not going smoothly
is a lack of preparation on the part of the Product Owner. The planning
meeting is not the place for the Product Owner to decide what is required,
although they may may make trade-offs and substitutions during the meeting
they need to go into the meeting knowing very clearly what they want to ask
for.
The Product Owner needs to be on top of their brief, they need to be able to
answer developer questions and clarify what is being asked for. If they cannot
they need to either bring someone who can or they need to be prepared to
make changes to what they want. Thus, if the Testers and Developers ask
questions about issues the Product Owner cannot answer immediately they
can bring another story into play while they find out the answers. This may

26

mean that a story is postponed until the following iteration - or even later -
or it may be possible to schedule the difficult story until later in the iteration.
As you might guess from this it helps if the Product Owner is not only
prepared for the iteration they are planning now but also has a rough idea of
what they plan to ask for in future iterations. These plans shouldn’t be too
detailed - because things change both in priority and detail - but the Product
Owner needs to have some ideas.
Medium term plans, about the next few iterations, were traditionally called
Release Plans but I believe the name Quarterly Plans bot better describes
the plan and moves away from the association with releases. I have discussed
such plan elsewhere (Kelly 2010) and will do again.
It is also critical that the Product Owner has the authority from the organiza-
tion and team to make decisions during the planning meeting: on priorities, on
changes to priorities, on details of features and on trade-offs. Nothing is more
disruptive - and morale sapping - than completing a planning meeting one
day to discover the a day or two later that somebody else has overruled the
Product Owner and has changed what was agreed in the planning meeting.
As mentioned before, there is sometimes a need to have more than one Product
Owner in the planning meeting. When this is all Product Owners concerned
should be in agreement about what is going to be asked for, what the priorities
are and be prepared for problems. It may be that the Product Owners benefit
from having their own small meeting prior to the full planning meeting.

Now

Visit http://www.softwarestrategy.co.uk/dlgsheets/planningsheet.
html to download a sheet or to buy a printed sheet.

References

Ariely, D., and K. Wertenbroch. 2002. “Procrastination, deadlines, and
performance: self-control by precommitment.” Psychological Science 13 (3).
Buehler, R., D. Griffin, and J. Peetz. 2010. “The Planning Fallacy: Cognitive,
Motivational, and Social Origins.” Advances in Experimental Social Psychology
43: 1–62.

27

http://www.softwarestrategy.co.uk/dlgsheets/planningsheet.html
http://www.softwarestrategy.co.uk/dlgsheets/planningsheet.html

Buehler, R., D. Griffin, and M. Ross. 1994. “Exploring the ‘Planning
Fallacy:’ Why People Underestimate Their Task Completion Times.” Journal
of Personalty and Social Psychology 67 (3): 366–381.
Cohn, M. 2004. User Stories Applied. Addison-Wesley.
Hofstadter, Douglas R. 1980. Godel Escher Bach: An eternal golden braid.
Harmondsworth: Penguin Books.
Jones, C. 2008. Applied Software Measurement. McGraw Hill.
Kahneman, and Tversky. 1979. “Intuitive Prediction: Biases and Corrective
Procedures.” TIMS Studies in Management Science (12): 313–327.
Kelly, A. 2010. “Three Plans for Agile.” Toronto: RWNG. http://www.
requirementsnetwork.com/node/2663.
Makridakis, S., R. M. Hogarth, and A. Gaba. 2010. “Why Forecasts Fail.
What to Do Instead.” MIT Sloan Management Review 51 (2).
Surowiecki, James. 2004. The wisdom of crowds. 1st ed.. New York:
Doubleday. http://www.loc.gov/catdir/bios/random055/2003070095.html.
Weick, M., and A. Guinote. 2010. “How long will it take? Power biases time
predictions.” Journal of Experimental Social Psychology 46.
Wiseman, R. 2009. 59 Secods. Macmillan.
Zackay, D., and R. A. Block. 2004. “Prospective and retrospective duration
judgments: an executive-control perspective.” Acta Neurobiol Ex (64): 319–
328.

(c) Allan Kelly 2013 allan@allankelly.net

This essay is a work in progress. The author welcomes
comments and feedback at the address above. April 2013

About the author

Allan Kelly has held just about every job in the software world, from system
admin to development manager. Today he works as consultant, trainer
and writer helping teams adopt and deepen Agile practices, and helping

28

http://www.requirementsnetwork.com/node/2663
http://www.requirementsnetwork.com/node/2663
http://www.loc.gov/catdir/bios/random055/2003070095.html
mailto:allan@allankelly.net

companies benefit from developing software. He specialises in working with
software product companies and aligning products and processes with company
strategy.
He is the author of two books “Business Patterns for Software Developers”
and “Changing Software Development: Learning to be Agile”, the originator
of Retrospective Dialogue Sheets (http://www.dialoguesheets.com), a regular
conference speakers and frequent contributor to journals.
Allan lives in London and holds BSc and MBA degrees. More about Allan at
http://www.allankelly.net and on Twitter as @allankellynet (http://twitter.
com/allankellynet).

29

http://www.dialoguesheets.com
http://www.allankelly.net
http://twitter.com/allankellynet
http://twitter.com/allankellynet

	A Guide to Iteration Planning meetings
	The Players
	The Artefacts
	The Meeting Sequence
	First meeting
	Second and subsequent

	The Planning Game
	Testing
	Trivia and Spikes
	Counting Done

	Velocity and currency
	Carry over work
	Ball-park estimates
	How long is a planning meeting?

	Pre-Planning Meeting
	Planning Poker
	Some Planning Poker theory
	Why breakdown Blues?
	Estimate in Points Not Hours
	Ideal hours

	And ``Actuals''
	Deadlines
	Product Owner Preparations (Homework)
	Now
	References
	About the author

