
Why Agile?

By Allan Kelly, allan@allankelly.net, http: // www. allankelly. net

There are many reasons why individuals, teams and companies may want to
become “Agile”. For some Agile is simply “better” for others there is a specific
objective - say, short time to market. While for others there may be nothing
more than fashion and the desire to have the latest and greatest method on the
resume or company website.

Answering “Why Agile?” should be an important step for any organization
embarking on Agile. Knowing “Why?” will help guide the selection of Agile tools,
techniques and approaches. Perhaps more importantly, defining the objective
also defines what Agile means to an organization.

“Why” is also important for individuals: Why should they change? Why should
they make the effort? Why should they step into the unknown?

Relating changes to individuals, illustrating why changes will benefit people
personally helps motivate people and involve them. Too often I hear it said that
“People resist change”, I don’t accept this. I agree people accept change which is
done to them, change in which they see no benefit to themselves. But I believe
people who are involved with change and can see benefit for themselves are much
more likely to embrace and support change.

To a careful reader this list may well appear to overlap and duplicate the “What
is Agile?” list given earlier. At times it seems Agile has become a bit of a
movable feast capable of satisfying any desire. Partly this is because of the
Marketing Perspective: the Agile brand is used to sell a solution to whatever
your problem seems to be. It is also because of the Toolkit Perspective: the
same tools may be used to achieve multiple ends.

Please therefore, before you start down the Agile road ask: Why does this orga-
nization want to be Agile? Or: What benefit can Agile bring this organization?
And ask the people who do the work: What benefit would you like Agile to bring
to you?

For many organizations Agile simply means better. Specifically: Better IT
delivery. Anything which promises to reduce the number of IT project failures is
attractive to organizations. While I would except this reason - or exasperation -
as the motivation for an Agile adoption I would like to think there are better
reasons.

Another way of asking “Why Agile” is to ask: “What are the benefits of Agile
type working?”. What follows are a list of reasons and benefits to explain why
you may want to work Agile. There is merit in all these but you, and your
organization, need to decide which are your reason, or reasons. Your driving
rationale may not even be on this list.

1

mailto:allan@allankelly.net
http://www.allankelly.net


Improved ROI

Simply reducing IT failure will improve the returns from IT investments. Not
wasting time and money on developments that never deliver, or pulling the plug
on failing developments earlier; are, alone good enough to improve the rate of
return on IT investments. However they are not the only way to improve ROI.

Embracing incremental releases to customers is another guaranteed way to
improve return on investment. Traditional projects would spend months or even
years developing software before any benefit was shown. As a result the cashflow
and benefits looked like this:

Figure 1: Traditional big bang delivery

This graph shows a perfect project, developers beaver away for 12 months and
in the final month deliver the product. Let us assume there is no need for a
subsequent test-fix or maintenance phase needed to pick up problems.

The project spends £40,000 each month for 12 months to develop a deliverable
product. As a result cash flow is negative, by £40,000, in each of the first 11
months. In the final month £650,000 of value is delivered in one hit. Consequently
the net cash flow in the final month is £610,000 and cumulative value £650,000.

Let us assume this is the projection for a proposed project. This scenario would
generate an net present value (NPV) of £158,523 - assuming an annual risk free
interest rate of 3%, 0.25% per month. Using the same figures for an internal
rate of return (IRR) calculation results in a 5% return on investment. (Only 2%
above the risk free rate.)

Note: both NPV and IRR are common mechanisms used by businesses for
calculating the return on investment. Because of differences in the assumptions
and mathematics of both models they do not necessarily agree.

2



Now consider the incremental model. Delivering some software earlier, allowing
some (but not all) benefits to be released earlier produces benefits and cash flow
sooner:

Figure 2: Incremental delivery, a little and often

In this model the team doesn’t produce anything for the first two months. The
team spend the same amount of money each month but after month two deliver
one tenth of the value every month. As a result the cumulative value grows and
grows over 10 monthly deliveries.

Now it is reasonable to argue that the team might deliver less than one tenth of
the value in the first few months and more than one tenth in the later months.
It may also be true that some teams are capable of delivering in some value
even earlier. These are both value points but for the purposes of this calculation
these simplifying assumptions are made.

Repeating the NPV calculation now produces a value of £637,957 - approximately
four times higher than the traditional model. However, the IRR calculation now
produces a return of 25% - five times greater than before and 22% over the risk
free rate.

Given the size of these increases even if many of the simplifying assumptions are
relaxed there is, in all likelihood, still more value in doing the work incrementally.
Thus, even if a company rejects the argument that Agile reduces risk, even
if it refuses to believe that higher quality will benefit customers and shorten
schedules and reduce costs, even if they choose to reject the ability to flex
requirements and to decline the options offered to change, then, in raw cash
terms Agile Incremental delivery can still improve return on investment from
software development.

3



Reduced risk

Delivering in an incremental model will reduce risk for several reasons. Firstly,
rather than tail loading risk into the final phases (test and deployment) risk is
spread throughout the work because test and deployment are spread throughout
the work. (The Royce paper often cited - rightly or wrongly - as the origin of
the “Waterfall” method itself warns of tail loading risk.)

In order to be incremental a work effort must produce deliverable products early
in the work. This all release activities will have been exercised early. Software
will have been packaged and delivered to users - into the data centre, over the
web, or onto a CD and physically mailed out. Doing this will flush out unforeseen
problems.

Second releasing software to users allows for feedback. Listening and acting on
this feedback will further reduce risk. This lessons the chances of delivering “the
wrong thing” or something which is out-of-date before it reaches customers.

Finally, because problems will be seen earlier should they prove insurmountable
the sunk costs will be reduced. Therefore there is less at risk.

In general the Agile approach to risk can be characterised as: Face it head on
and act. This is not to ignore other approaches to risk, which may still be used,
but as a general rule risks should be tackled as they are identified.

In the short run I suspect companies adopting Agile working will experience
reduced risk, fewer IT project failures and more IT success. In the longer term I
expect that this reduction in delivery risk will allow, even embolden, companies
to take risks with IT elsewhere. I expect to see even more ambitious IT projects
attempted using fewer resources and more less time.

While I am convinced Agile software development reduces risk compared to
traditional (i.e. waterfall style) development I am sceptical about the ability of
Agile to reduce IT failure rates in the long run. The history of IT in general is
one of taking risks, pushing technology, pushing change.

However many of these risks have been taken despite the waterfall model not
because of it. Although in the popular press Agile competes with waterfall the
reality is that Agile competes with chaos. It is not uncommon to find managers
in a company have never previously managed software development. To borrow
a term from Tom Davenport the approach might best be described as HSPALTA
- “hire smart people and leave well alone” (Davenport 2005).

Companies complete IT projects without even attempting the waterfall model -
they might not even have heard about the model! The waterfall model might be
what people have been taught in college but a) many people in IT didn’t study
IT in college and b) the model is such a bad fit that even those who knew of it
often didn’t try it.

A third group of organizations knew of the model and even attempted to impose it
on their workers but in doing so create unworkable processes and even destroyed

4



successful working practices. One research study even went as far as suggest these
paradoxes created “Janus developers” having to present two meet incompatible
demands (Howcroft 2003).

Case study: CMMI destroys Reuters

I worked as a developer at Reuters around the turn of the millenium.
At the time the company was grappling with the Y2K bug and the
Euro introduction, dot-com boom and plenty of other usual stuff.

In London I worked at a team handling data feed from exchanges
which fed the Reuters terminals found in every major financial com-
pany. We had to respond to changing data formats, new APIs, bug
fixes and a lot more. My small team - 3 of us within a bigger team
(about 20 people) - did something which in retrospect looked quite
Agile.

Processes were not particularly well documented and when they did
exist people - in all teams - treated them flexibly. Many teams just
did their own thing, as long as it worked they were generally left
alone.

However Reuters wanted to do better and decided to become CMMI
level 3. For those who don’t know, CMMI, and its previous incar-
nation CMM, are models for measuring software process maturity:
1 is poor, 5 is excellent. The models are best considered rulers for
measuring maturity rather than processes in their own right. A ruler
allows measurement but cannot enforce a given size.

Management hired some consultants to make the CMMI level 2
and take them to level 3. These consultants wrote processes which
were imposed on teams all through Reuters. From the fast moving
financial markets were I worked to the stayed product development
teams. Someone compared the new processes to “pouring concrete
on the rails of the train of progress.”

I left Reuters as the changes enveloped my team, I could see what
was about to happen. From the reports I heard from others it was
disaster. I do not think it is too much of an exaggeration to say that
Reuters destroyed a large part of their own software development
capability.

Several years later I met one of the consultants who was hired by
Reuters. My blood pressure rose as I recounted my experience. Then

5



he told me that the consultants had foreseen exactly that scenario
and warned Reuters. However Reuters management chose to press
on regardless, replacing the original consultants with more compliant
ones where necessary.

Realisation of IT benefits

Moore’s Law states processor power doubles every 18 months, successful IT im-
plementations allow organizations to benefit from some of that change. However
coupling an organization to a rapidly changing domain also brings change.

Almost since it was invented in the 1940s and 1950s, certainly since the 1960s
and 1970s, IT has raced ahead: processor power increasing, memory sizes
increase, physical sizes shrinking. The potential benefits of these improvements
have sometimes been difficult to pin down. This lead the economist Robert
Solow state “”You can see the computer age everywhere but in the productivity
statistics" [@Solow1987]

Part of the problem has been that IT came to be seen as a block to change rather
than an enabler. IT departments which gain a reputation for working slowly,
resisting change, delivering late and with poor quality. Some of these problems
were rooted in mind set that saw extra time as the solution to every problem.

If all Agile does is allow corporate IT groups stop being the blocks to change
then Agile itself doesn’t need to do much else. Allowing corporate IT to be an
enabler will allow more of the true potential of IT to be realised.

Better Quality

Finally, under better one should note quality. Quality is important because
delivering quality they can be proud of is a big motivator for technical engineering
staff. Too often in the past quality has been compromised in the mistaken belief
that it can be traded for speed.

Reversing this position has an immediate benefit: higher quality leads to shorter
schedules as already discussed. It also leads to better quality code which has
benefits of its own but perhaps more importantly motivates staff. Rather than
feeling “under the thumb” engineers can do quality work which makes them
happy and proud.

Better is more predicable?

When I ask development teams, particularly corporate IT teams,
“Why Agile?” one of the reasons I am usually given is: “To be more
predictable in delivering what we said we would deliver.” I accept

6



this, I smile, I add it to the list but inside I’m thinking “Sorry, Agile
doesn’t do that.”

Many managers have been trained to believe that “On time, on
budget, on requirements” is not only the key to success but the
measure of success. Agile may well allow a team to deliver something
on time, it can allow a team to stay within budget but it often does
so by being flexible the “what is being delivered.” (See the Iron
Triangle discussion earlier.)

True, if I team want to stick to the original requirements statement
then Agile would allow that too. But in that case the time and/or
budget would need to change.

Agile as Fashion

In the name of honesty one should recognise Agile as a fashion statement.
While (male) software developers might not like to admit fashion has a role in
their (rational) decision making process it does. The desire to have the latest
technology on the CV/resume is actually a sensible employment strategy.

But it is not just developers who are fashion conscious. Some managers, and
even the organizations they lead, are guilty of talking Agile to be in with the in
crowd. In some cases such talk might even extend to actually doing something!

Within fashion I will also include Badge Collecting. A bit like Boy Scouts
there are those in the IT profession who collect Certifications. Developers and
Testers are not immune but Project Managers seem to be the most prone to
this phenomenon: Prince 2 and PMI are the traditional badges. Agile provides
Scrum Master Certification and Agile Project Manager badges to add to the
collection.

There may well be rational arguments behind an apparent fashion driven adoption
of Agile. For example, in a world where more and more teams are Agile, and
where the best developers want to work Agile companies which are openly
not-Agile may find it hard to recruit new staff.

While I do not regard fashion as the best reason for a company to adopt Agile
one should at least acknowledge it sometimes happens.

Flexibility and Opportunities

Agile, as the name implies, is responsive. Agile teams renegotiate what they are
building all through the development process. This allows them to respond to
changing needs a seize opportunities that arise. Although it should be noted
that some see this as a disadvantage of Agile.

7



Flexibility itself has a number of benefits. Firstly it reflects the world we live
in: the world changes, businesses change, new opportunities arise and so on.
Things don’t stop just because someone is writing software. Being flexible keep
the process close to the real world.

Flexibility is also valuable to the process itself. By being flexible throughout the
development process the need to settle everything up front in detail is removed.
Without flexibility businesses engage in crystal-ball-gazing trying to make every
decision before any coding is done. This is somewhat self defeating as the longer
it takes to make these decisions - and capture then in documents - the more
time there is for change to happen.

This flexibility, particularly when coupled with incremental delivery, spills out of
IT and into the business as a whole. Rather than waiting for the final delivery
businesses can start to integrate the partially completed products into their
existing working practices. As a result big-bang change programmes are less
applicable. While this might initially create complications for a business such
change programmes have a poor track record. A series of small-bangs may create
more to manage but also reduce risk.

On a personal level flexibility is good because it should lead to a reduction in
the disputes between people over what is “in” and what is “out.” All possible
work is acceptable no matter when it was proposed, it is simply a question of
priorities and value at any point.

This flexibility comes at the cost of predictability. Or rather, if the flexibility
option is used then predictability suffers. If flexibility is not exercise then a good
team should be fairly predictable.

Unfortunately for software developers businesses crave predictability and also
crave flexibility and responsibility. Agile working gives the choice to the business
customers.

Higher productivity

Higher productivity is one of the most regularly cited advantages of Agile. While
I am confident that Agile working can improve team productivity it should be
recognised that measuring productivity in software development is a incredibly
difficult.

For example, one naive way of measuring productivity is lines of code. However
the same algorithm can be expressed in different languages and even in different
ways within one language. Correlating lines of code with delivered functionality
is pretty much impossible.

Even if one could find a way of measuring coding productivity the problem
would not be solved. Good teams might well find a way of eliminating requested
features, or re-using existing code. (One of the principles behind the Agile

8



Manifesto actually encourages teams to do just this: “Simplicity–the art of
maximizing the amount of work not done–is essential.”)

Measuring features delivered is not a good measure either because more features
do not necessarily make for a better product. Indeed they may over complicate
a product.

Measuring bugs fixed is no good either since, according to Capers Jones (Jones,
Bonsignour, and Subramanyam 2011) teams with a greater number of bugs will
have disproportionally more “easy to fix” bugs. When systems have few bugs a
higher percentage of those bugs will be difficult to fix.

Consequently one should examine any claims of improved productivity with a
large pinch of salt.

It is worth noting that measuring productivity for IT use in general is itself
difficult. For some years statisticians and academics have struggled with the
so-called “Productivity Paradox” and characterised by Robert Solow’s comment
“we see the computer age everywhere except in the productivity statistics.” (New
York Times Book Review, July 12, 1987).

Still, I believe there are several reason why one would expect Agile teams to
exhibit greater productivity:

• Agile teams generally adhere to “self-organization” or “self-managing”
ideas; such teams are believed to result in more productive teams. (A later
chapter will look at such teams in more depth and discuss the productivity
question.)

• The Agile approach to quality should result in fewer bugs and thus fewer
fixes. Capers Jones (Jones 2008) reports that projects with low defact
potentials and high defect removal rates have shorter schedules, i.e. the
same people produce the same products in less time

• Agile teams regularly review the work they are asked to do to prioritise
the highest value. Thus one could expect the work delivered to have more
business value than a similar team which simply worked from the first to
last item.

I’m sure this list could be longer but these three points should serve to demon-
strate the point.

Competitive advantage

At the time of writing I believe Agile working still confers competitive advantage
for many organizations. Working Agile companies are able to bring working
software into us sooner, refine what to build in the light of feedback, capitalise

9



on better quality to reduce schedules and cost as well as reducing maintenance
costs.

However I do not expect this situation to remain so for very long. As more and
more companies switch to Agile working there will be less competitive advantage
in working Agile. Instead Agile will be essential to even attempt to compete.

To illustrate this point think of Toyota: when only Toyota worked lean Toyota had
an advantage over GM, Ford and other car companies. Today any car company
which does not embrace some form of Lean is at a competitive disadvantage.

(Toyota hasn’t stood still, while it has been open in letting GM, Ford and others
copy what it is doing it has moved on. While Toyota isn’t perfect and has
problems of its own it does demonstrate how a learning organization uses the
ability to learn, and act on the learning, to advance.)

Unfortunately many companies are scared of Agile when I describe it. I am
frequently asked “How can you expect our customers to agree to an open ended
development without the time, cost and features all being fixed?” - or some
variation on this question.

I would wager that for every customer who thinks like this there are more potential
customers who don’t know what they want and can’t enter into negotiations
because of it. Further, anyone who has worked with traditional IT groups should
know that they are not very good at delivering fixed requirements to fixed time
on a fixed budget.

Since moving to Agile working at least one of my clients has found that their
market has increased. They have more customers because they do not demand
everything is fixed. Further this company has on-going relationships with
customers resulting in bigger deals overall. In fact the Managing Director will
not bid on such contacts and has actively moved to get rid of customers who
demand a triple fix.

There are more than enough potential clients who want to work this way and by
doing so he has a competitive advantage.

Governance

Agile working, specifically regular releasable deliveries should lead to more
effective governance of IT work. Governance of traditional work was often based
on the delivery of proxy artefacts at stage gates: requirements documents, project
plans, staffing plans, test reports and such. It was delivery of these documents,
and sometimes the content, that was examined by the governance process.

Should a work effort be deemed to be in trouble corrective action was difficult.
The effort could be stopped entirely, staffing adjusted or specific changes re-
quested. However this was governance at arms length because the reports might
not tell the whole, or true, story.

10



In the worst cases cancelling an effort would mean writing off the money spent
on it with nothing to show. This was a drastic course of action which governance
groups would be loathed to take. Even failing work efforts took on their own
momentum and could be difficult to stop.

Governance of Agile efforts can, and should, be based on the assessment of
working software. Documentation and reports might supplement this but the
guts of the assessment should be based on:

• Does the product delivered so far indicate the spend has been worthwhile?
Or, to put it another way: From what we can see do we have confidence
the ability of the team to continue delivering? And has the money been
well spent?

• Does the opportunity the team have identify justify spending some more
money?

Therefore governance is based on more honest data not proxies that can be
fudged.

Further should review deem it not worth spending any more money they company
still has a working product of some value from the work so far, i.e. not all the
spend needs to be written off. (Since each iteration should end with a deliverable
product.)

Taken together these benefits increase the options actually available to a re-
view. Traditional reviews had limited options because some of the options were
distasteful.

Observant readers may notice that the governance process sketched looks a lot
like portfolio management. Indeed Agile Governance might be best described
as “Governance through Portfolio Management” - and will be covered in a later
chapter.

Evidence?

One not unreasonable question asked of Agile is “Where is the evidence that
Agile works? And that Agile is better than X ?”. The short answer to this
question is: There isn’t any.

There are case studie of Agile working well. However most of these are written
by those who have an interest promoting Agile, and perhaps their own services.
It is also true that there are case studies - or at least reports - of Agile failing.

As regards hard laboratory trials of Agile there are no studies I know of. Nor
are there any statistical - or quantitative - studies of Agile.

Software development isn’t the kind of thing you can run laboratory trials on.
You either have to use different people or have the same people repeat a task.

11



Both of these conditions will lead to questionable results. Even if you could
create a laboratory style experiment it would be expensive. The cost of multiple
development professional for several months if more money than most researchers
can muster.

There are those who will refuse to believe case studies along, they look for hard
laboratory data. Academics, particularly in social sciences, long ago came to
accept qualitative research (e.g. case studies) as a form of research alongside
quantitative research (e.g. numerically back studies.) Unfortunately most of
the case studies cited in Agile texts would fail to meet the standards set by
academics.

Part of the problem in finding evidence for Agile is simply defining what is Agile
and what is not. Therefore, in looking for evidence, it is better to focus on tools
and practices and ask: is there evidence practice X is beneficial?

Here there is some evidence that some of the Agile tools are effective. Take for
example Test Driven Development. One study found this lead to a reduction in
defects between 39% and 91% [Nagappan2008]. (As this is an evolving field I do
not intend to perform a comprehensive review of the literature and evidence. If
this is an important issue to you then I suggest you perform your own study of
the practices you are considering.)

However the lack of hard evidence for Agile needs to be seen context: there isn’t
much hard evidence that Waterfall or any other method works either. Certainly
I’ve never seen much evidence and I have looked - although perhaps not as
rigorously as I should, or as often and as recently as I should.

What are you trying to optimise?

Ultimately you, and your organization, needs to determine what it is trying to
optimise for. Optimising for low cost production would lead an emphasis on
quality but also an acceptance of large backlogs and long response time. (Think
of the UK National Health Service prior to 1997, very efficient in terms of money
spent but with long waiting lists for many procedures and negligible patient
choice.)

Conversely optimising for rapid response to requests would lead again to quality
but an acceptance that backlogs need to be small - or non-existent - with a low
utilisation rate and higher costs. (Think of the health providers in the USA,
wide choice, short (if any) waiting times but the most expensive system in the
world. One study I saw in the early 2000s suggested one in three beds in America
was empty at any given time.)

Optimising for growth might well lead one to emphasis the need to recruit new
staff and customers which would, in turn, lead to adoption of the fashionable tools
which enticed interest in these groups. This approach requires an acceptance
that costs are likely to race ahead of revenues.

12



Unfortunately, in my experience, few companies explicitly state what their
primary goal is. Instead staff are left to make their own assumption about
what the company wants and divine meaning in the tea-leaves of management
statements. Naturally this leads conflict as different staff aim to optimise different
things.

Conclusion

If nothing else one benefit of Agile is to offer a model which fits modern software
development better than the 1970’s inspired Waterfall model. But the benefits
can be much more.

Before embarking on your own Agile initiative seek to understand what your
organization is optimising for and why Agile is a good idea. Even if you can’t
understand your organizations motivations at least understand your own.

References

Davenport, T. H. 2005. Thinking for a Living. Boston: Harvard Business School
Press.

Howcroft, and Wilson, M., D. 2003. “Paradoxes of participatory practices: the
Janus role of the system developer.” Information and Organization 13 (1): 1–24.

Jones, C. 2008. Applied Software Measurement. McGraw Hill.

Jones, C., B. Bonsignour, and J. Subramanyam. 2011. The Economics of
Software Quality. Addison-Wesley.

(c) Allan Kelly 2013 allan@allankelly.net

This essay is a work in progress. The author welcomes
comments and feedback at the address above. April 2013

About the author

Allan Kelly has held just about every job in the software world, from system
admin to development manager. Today he works as consultant, trainer and
writer helping teams adopt and deepen Agile practices, and helping companies
benefit from developing software. He specialises in working with software product
companies and aligning products and processes with company strategy.

He is the author of two books “Business Patterns for Software Developers”
and “Changing Software Development: Learning to be Agile”, the originator of

13

mailto:allan@allankelly.net


Retrospective Dialogue Sheets (http://www.dialoguesheets.com), a regular
conference speakers and frequent contributor to journals.

Allan lives in London and holds BSc and MBA degrees. More about Allan
at http://www.allankelly.net and on Twitter as @allankellynet (http://
twitter.com/allankellynet).

14

http://www.dialoguesheets.com
http://www.allankelly.net
http://twitter.com/allankellynet
http://twitter.com/allankellynet

	Why Agile?
	Improved ROI
	Reduced risk
	Case study: CMMI destroys Reuters

	Realisation of IT benefits
	Better Quality
	Better is more predicable?

	Agile as Fashion
	Flexibility and Opportunities
	Higher productivity
	Competitive advantage
	Governance
	Evidence?
	What are you trying to optimise?
	Conclusion
	References
	About the author


