
(c) allan kelly Page 1 of 6

Ten tips for making
your Agile adoption
successful
By Allan Kelly, Director & Consultant

I am not the first to write a “10 habits of highly effective Agile adoption”
type article and I’m sure I won’t be the last. Actually, I put off writing such
a list largely because there were so many such lists floating around.
Ken Schwaber has been reported as saying that only 30% of teams who
attempt Scrum will be successful. On his blog he says he doesn’t remember
this and instead suggests only 30% will become “excellent development
organizations.”
What I find interesting about this quote is that it aligns with many other
change management studies. Change experts like Harvard Professor John
Kotter regularly say 70% of major change efforts fail.

However you look at it the prognosis isn’t optimistic. Then one day as I was
finishing a course delivery someone asked me: “What can we do to ensure
that we are in the 30% who make it?” – at that moment I knew I had write
this list.

There isn’t anything magical about 10 items it could have been 7 or 12, all
three numbers have a resonance but as I put the items together it seemed that
these 10 were more significant than anything else I could think of, and taking
anyone away made the list less effective.

So, with apologies for another top-10 list, here you are.

1) Use a physical board
“I put the shotgun in an Adidas bag and padded it out with four pairs of
tennis socks, not my style at all, but that was what I was aiming for: If
they think you're crude, go technical; if they think you're technical, go
crude. I'm a very technical boy. So I decided to get as crude as possible.”
William Gibson, Johnny Mnemonic

I have become convinced that the single biggest difference between teams
which successfully adopt Agile working and those who try, fail, or end up
stuck is the use of an actual physical board.

I know some teams find this difficult, I know some teams are distributed, I
know there is technology out there to do this for you but I stand by my point.
If you can make it physical, in a place where many, if not all, can see, then
you are more likely to succeed.

(c) allan kelly Page 2 of 6

It is hard to explain the logic involved in why I recommend this, you have to
try it and witness it. I feel there is some kind of magic that happens when the
very abstract, theoretical, world of software meets physical cards and board.
Visualizing the work is only the start: learn to read the board and act on what
it is telling you.

2) Start collecting and using statistics
Velocity, burn-down, bugs identified, bugs logged, etc. etc. Metrics have a
bad name in software development - rightly in many cases. But that only
means that have been badly chosen, collected and/or used, it doesn’t mean
they aren’t useful. At the very least measure your velocity and create a burn-
down chart or cumulative flow diagram of the work.

The beauty of Agile working is that it is quite easy to measure a few simple
metrics. Once measurements get complex people don’t understand them so it
becomes more difficult to learn from them. Like the boards, the metrics are
useful in their own right but are far more useful as a learning instrument.

3) Engage a coach/consultant:
At the risk of being accused of trying to make work for myself I should say
you can adopt Agile all by yourself. You can read the books, you can
experiment, you can go on courses. But doing it without help makes the
whole process slower and increases the risk that you won’t make it to the
30%. Plus, adoption will take longer – and that brings more risk.

Personally, I find it difficult to know just how an Agile Coach differs from an
Agile Consultant. What ever you call the role you want someone who can:

• Observe, examine, query and challenge your thinking on what you are
doing

• Provide advice on which practices and process to adopt, and how to best
adopt them

• Offer examples of what they have seen work, and not work, elsewhere,
and how other team tackle similar issues

You may need to work with multiple advisors since few will be able to cover
all process, practice, technology, product and strategy bases. On very large
team it might be worth having full-time consultants although the model I
have had most success with is light-touch coaching in tandem with a pull-
change model (below).

I don’t believe such an advisor needs to be full time but I do believe it should
be ongoing. I practice, and have written before about, light-touch Agile
coaching, in this model I return to companies at intervals, perhaps monthly,
perhaps more frequently, sometimes less frequently and continue the
discussion.

(c) allan kelly Page 3 of 6

4) Action over talking
Action speaks louder than words, until you start trying to do Agile you can’t
foresee all the issues and questions which will arise. The longer you spend
talking about doing it, and not actually doing it, the more it anticipation will
build up, the more more it will look like jus another management fad.

By all means talk about it, plan a bit but there is no real substitute for just
getting stuck in and doing it. Learn from what your doing and refine. Use
some measurements to understand what is happening. Don’t waste your time
looking for evidence, make your own.

In particular do not spend your time agonizing over whether to do XP or
Scrum, or Lean or FDD, or DSDM or Kanban. They are all pretty much of a
muchness and you will end you up crafting your own hybrid anyway.

5) Give everyone training and start group wide discussions
Teams don’t get to be Agile by management deeming “thou shalt be Agile” -
although plenty have tried the approach. Reading books works for some
people but most books go unread, or the words go in one eye and out the
other.

Invest in taking the time to explain to people what Agile is – or at least what
Agile means to your organization. Today most techies have heard the word
“Agile” but what they have heard, which bits they remember, and whether
the result was good or bad differs. Teams need to start with a shared
understanding.
But don’t stop there, make time for people to talk about what Agile is to
them, what they like, don’t like, will do, won’t do. Agile is a team sport and
unless the team have a shared understanding they will be playing different
games. This discussion should start in the training sessions as the team
forms their own, shared, understating.

6) Enthuse, Pull, don’t Push:
Anyone who has worked around companies for a few years will have seen
management pushing the latest change initiative: BPR, ISO 9000, Sig Sigma,
CRM, etc. etc. Someone dreams up these ideas and then a change machine
sets about pushing them out.
We live in a post-modern, post-BRP, post-layoffs, post-recession, post-
everything world. Employees aren’t children they’ve heard what happens.
Too often before management initiated change, especially that involving
consultants, has involved redundancies. If you want to cut staff then cut
them then move onto Agile.

Apply a lean principle: Pull, don’t push.
The moment someone uses the words “change management” you are in the
world of push change so forbid the words “change management.”
If you are in management this means you need to engineer a pincer
movement: you want enthusiasm for change coming from the bottom up to
meet your support coming top down. Introducing Agile top-down alone is,

(c) allan kelly Page 4 of 6

in my opinion, quite likely to kill it - employees are rationally skeptical of
top-down management change.

Seek to enthuse individuals and teams, have them ask for Agile. Rather than
impose change from the top down managers need to build, kindle people’s
curiosity, get people asking questions and for help, create bottom-up change
initiative and support it.

Do everything build the fire without extinguishing it, and when they ask give
them the help and support they need: sign-off book expenses, provide budget
for speaker, trainers or coaches, say Yes to time for conferences. Give and
give generously.

Plus, involve yourself. You need to learn too – even if you know it all you
need to be there when the shared understanding is built. And you need to
change too, learn to change your own behaviors to match.

7) Be clear on Why you are going Agile
What ever level you are, engineer, tester, project manager, director, look
beyond the Agile hype. What is the problem you want “Agile” to fix for
you? Understand why you want change and what you expect from it.

Don’t just “get Agile” because it is this month’s fashion, get “Agile” to
achieve something more important. Understand what individuals want from
Agile, what they want to make their life better, and understand what the
organization wants from Agile – innovation? Reliable schedules? Fewer
bugs?
Ask you team, ask your manager, and ask “What do you think your manager
wants?” If everyone stands to benefit from Agile then everyone will be
willing to help with adoption. When people don’t see benefits change will be
hard.
As your adoption proceeds you use these aims to choose your tools, optimize
your processes and measure your success.

8) Process and technical, Adopt technical side as well as
process side

Don’t think you can just change the process and it will all be all right. You
need to address the technical side too, you need to improve quality, you need
to support the engineers, testers and others who are at the code face doing the
work.
I’ve come across big companies who view the technical side as somehow
dirty: the attitude seems to be “thats technical” or “ they get their hands
dirty” or “we can ship it to [Low cost country of choice this week]”. If this is
your attitude you will fail.
Get your hands dirty, talk to engineers, adopt Test Driven Development,
refactoring, shun big up front design architecture, learn to live with rough
designs and evolving architecture. There are real feedback loops here.

(c) allan kelly Page 5 of 6

9) Get requirements flow clear and clean
It isn’t just about fixing the coding side, the requirements side needs to be
addressed to. Specifically there needs to be a clear path from someone who
represents requirements - typically called a Product Owner or Product
Manager and frequently staffed with a Business Analyst - and the
development team. Far more negotiation is going to happen over “what”
then “when”. Someone needs to represent - and have authority - over that
side of things.
Too many companies understaff this role to begin with. Agile makes that
understaffing acute. Bottlenecks in requirements will have a knock-on effect
in development.

As a mental exercise as yourself: if Agile doubles developer productivity
what happens next?

The answer is you need twice as much effort on requirements. O, at first you
might just burn off a big backlog. But as you do so your marginal value
delivered may well be declining.

10) Structural changes - Functional groups
Staff your teams to do the work for which they are responsible, end
functional groups - i.e. database developers and UI developers in separate
teams. This is just the first of more structural changes you will need to make.
But if you fail at this you won’t get to play again.

Teams which have to call out to other groups for specialist skills or
authorizations will block. Other groups have other priorities. Little
impediments build up, each one slowing the team down, sapping morale and
making your adoption more difficult.

That’s it
There you go, each of those items could be an article in its own right, maybe
one day they will be. That’s enough to make a difference.
If there was an eleventh is would be: let go of the past, things change, Agile
isn’t purely additive. If you don’t stop doing some of your current things you
will never see the full benefit. But that can wait until you’ve got some
success under your belt.
Originally published on InfoQ, June 2012

http://www.infoq.com/articles/ten-things-agile-
adoption;jsessionid=4BACD993B92B1C8AC1572EE696A7CCFD

(c) allan kelly Page 6 of 6

About the Author
Allan Kelly is London based and works for Software Strategy
where he provides training and consulting in Agile practices and
bespoke development services. He specialises in working with
software product companies, aligning company strategy with
products and processes.

In addition to numerous journal articles and conference
presentations he is the author of Business Patterns for Software
Developers (2012) and Changing Software Development:

Learning to become Agile (2008). He is also the originator of Retrospective
Dialogue Sheets (www.dialoguesheets.com). On Twitter he is @allankellynet and his
blog is at http://blog.allankelly.net.

About the Software Strategy
Software Strategy Ltd. is UK based
software development consultancy
specialising in Agile development
processes and practices. Software strategy
provides training, consulting and coaching
in software development and offers
bespoke software development.
Clients range from small web development agencies proving custom solutions to the
IT departments of large corporations. Most clients are UK based while others are in
Europe and the USA. Clients include Virgin Atlantic Airways, Thompson-Reuters,
Iris Legal, Research Instruments, Budget Group Insurance, Fugro and many more.
More about Software Strategy at www.softwarestrategy.co.uk, e-mail
contact@softwarestrategy.co.uk or telephone +44 (0) 20 3286 4292.

