
(c) Allan Kelly for Software Strategy Ltd. Page 1 of 7

Agile Contract
Options
By Allan Kelly,

Director & Consultant

Agile Contract Options
One question frequent questions asked about Agile methods is: "How do you
sign a contract based on Agile working?"

The traditional Waterfall model fits nicely with the way companies buy
things: a requirement is drawn up, a supplier quotes a price (based on their
interpretation of the requirements and estimates of cost) and everyone signs a
legally binding agreement.

There then follows a development period when everyone argues about what
is actually in scope, what is out of scope and what constitutes a change
request but eventually the work is done, and after some heated debate the
customer formally accepts the software and payment is made. The customer
gets 200kg of software, the supplier gets their money and everyone is happy -
or perhaps not quite everyone.
Of course there is nothing to stop you doing this anyway and then working
Agile but it does seem to defeat the whole point of Agile. A change requests
is not a big issue for an Agile team, not only do they expect them but lack of
change requests would be considered a problem by some. In the extreme
Agile teams can start work without any requirements document. Conversely,
since deliveries can occur in increments it would seem reasonable to expect
early payment.

If both supplier and customer are to obtain the maximum benefit from Agile
working then traditional style contracts for work need to be rethought. This
is an evolving area and companies searching for new models for Agile
contract. Consequently there are opportunities for innovative thinkers to
disrupt the status quo.
This article will look at four models available to suppliers and customers. In
time new models are likely to appear but right now there are broadly four
options.

Debunking fixed contract
The fixed price, fixed duration, fixed scope contract continues to be the
standard benchmark for contracts in the IT industry. This contract is based
on the idea that an initial project can define the scope of work; from which a
supplier can determine what is required - or rather how many people for how
long - and thus, calculate a price. Once complete this can be signed in blood
and executed as such.

(c) Allan Kelly for Software Strategy Ltd. Page 2 of 7

This model is based on the understanding that it is a thing that is being
supplied, namely, some quantity of specialist software. Yet the supply of
software is less like buying a tailor made suit more like buying financial
advice, it is more of a service than a good which is being purchased.

While I have met many people and companies who bid for work on this basis
I have yet to meet anyone who has successfully completed such a project
without relaxing at least one of the "fixed" parameter. The IT industry has
been signing these types of contracts for years and for just as long has been
failing to deliver them.
The reasons are not hard to find: once work commences it usually becomes
clear that things are missing from the scope, perhaps some items were
missed, or perhaps things have changed since the scope was set and, different
people interpret the same words differently. Consequently the scope must
change, which means duration or staffing must change, which means price
and, or, duration must change.
Continued use of this type of contract is touching. It demonstrates the power
of faith, positive thinking and hope that next time things will be different.
Perhaps the reason these type of contracts survive is because they can be
defended in court. It has been suggested that these contracts are better (for
the customer) should a project end in court but actually increase the risk of
customers and suppliers going to court.

Not for everyone
Before examining the options it is worth noting that this issue does not effect
every company creating software or attempting Agile. Companies which
create and sell software products - sometimes called ISVs, Independent
Software Vendors, the likes of Adobe and Intuit - only experience this issue
on the periphery. Most of their customers only buy products which are
finished, and don't get very much direct say in what the product does.
Some corporate IT group who create software avoid the contracting problem
too. They buy ready made software (SQL Server) or they create unique
software which will be used only by the company itself. Most corporate IT
groups at some time contract out work and consequently need to agree
contracts. In these cases the IT group is the customer to a third party
software supplier.
The companies corporate IT groups sub-contract to - sometimes called
External Service Providers, ESPs - are the ones who have most need to
contracts which provide for Agile working.
Agile fits easily into the ISV way of working, indeed, many of the Agile
practices started life in this segment. Similarly, Agile can fit into the
corporate IT world when corporate policies and procedures allow it.

But, ESPs and their customers have problems with the Agile way of working
because they need to put a legal contract in place between the two parties.
Yet in this problem lies opportunity.
Because customers (corporate IT groups and government departments)
expect IT projects to encounter problems contract terms have got stiffer and

(c) Allan Kelly for Software Strategy Ltd. Page 3 of 7

financial penalties higher. Only the biggest ESPs can consider bidding on
large contracts. Smaller companies cannot afford the penalty clauses and
cannot compete with the large players with deep pockets who can afford big
penalties.

Changing the contract structure potentially changes the way large IT
consumers buy bespoke software and may provide the proverbial win-win
scenario. Suppliers who can break away from the fixed price, fixed scope,
fixed time contracts stand to gain a competitive advantage over the market
leaders. Customers stand to benefit from innovative approaches that provide
a better outcome.

Option 1: Hide it
The simplest, least disruptive, way of using Agile within a delivery contract
is just to hide it. Don't tell the customer you are working any differently to
normal. Estimate and plan the work as you would normally, sign a perfectly
normal contract, then use Agile techniques to be better at delivery.

Test driven development, continuous integration, refactoring regular and re-
planning will all help you be better at delivering anyway. As far as possible
ignore the original plan, it was "wrong" anyway. If possible throw the
original plan away.

Trouble is, some customers want to see "progress against plan." You could
fake it. I have heard stories of teams who update the plans to make it look
like they were following the plan. However this approach isn't entirely
truthful, indeed, how can we ever hope to build trust with a customer is we
fake part of the process they believe in?
Naturally we don't want to lie to a customer, we want to build trust, and why
would they trust us if we were faking following a plan?
Of course, one could argue that customers who wanted to monitor your
progress against plan, rather than against actual delivery, are not
demonstrating trust either. However it is our job, as contractors, to show
them they can trust us.
So to make the "hide it" approach work there needs to be a "don't ask, don't
tell" type policy. If you have customer who is prepared to work follow this
line, and measure progress against actual deliveries rather than plan then
hiding Agile might work. But if you have such an understanding customer
then, you probably don't need to hide Agile.

Option 2: No cure, No pay
Adopting a "No cure, No pay" approach requires a certain degree of
confidence. The approach is simple: if the customer doesn't like what you
deliver there is no fee. However, if they don't pay for what you produce they
don't get to keep it either.
While such an approach looks scary it does provide the opportunity to
increase the fee. Clients have reduced their risk expose while the contractor
has increased theirs. The price for this rebalancing of risk is a higher price.

(c) Allan Kelly for Software Strategy Ltd. Page 4 of 7

Such an approach may be intellectually (and perhaps morally) the superior
position to adopt but it introduces a new risk. Since the client is less exposed
they have less motivation to make the work a success. When decisions get
hard to make, compromise are needed, time is scarce, or involvement
required the client has no incentive to do what is needed.
When clients have no skin in the game any failure is entirely the failure of
the contractor, clients have nothing to loose.
This risk might be offset if suppliers choose to only work with customers
who will maintain their commitment. This assume that the contractor feels
able to turn down work they judge risky and can correctly assess the
commitment level of the client.
To date I have only heard of solo and small suppliers offering this model.
The companies with deep pockets are either wary of the risk or don't feel the
need to offer this option.

Option 3: Rolling contracts
If we wish to keep customer involved then we need a mechanism to involve
them and continually ask them to recommit to the work. This is where
rolling contracts have a part to play. Rather than agree a large piece of all-
or-nothing work customer and supplier put in place a framework agreement
for a series of short development mini-projects, call them episodes or
iterations if you prefer.

The contract probably has some overall goal but doesn't contain a shopping
list of specific features and functions. The discovery of needs is part of the
work itself. One ESP I know of keeps all requirements out of the legal
contract. With each iteration something is delivered and, equally important,
the understanding of what is needed increases.
With each delivery the customer pays the supplier and has a choice: continue
to the next iteration or halt here. The emphasis is put on the supplier to a)
deliver something adds value and works, b) demonstrate that there is more
worth doing that will add value. If the client cannot see that the value
created is greater than the cost they can walk away from the work with that
which has been created so far. Equally, if the supplier finds that the client is
not co-operating they can walk away too.

In some ways this isn't that different from the traditional practice of paying
and recommitting after each distinct phase: requirements, design,
development, testing and deployment. The difference is that while in the
traditional model a decision to walk away before the end would result in no
delivered benefit under this model something is delivered.

On the supplier side there is an clear incentive to demonstrate value through
vertical slices of completed functionality - a common Agile practice.

Because the client can see something being created, value being added and a
solution coming together they should be enthused to keep working. And
because they know they have the option to walk away if they ever loose their
commitment they can.

(c) Allan Kelly for Software Strategy Ltd. Page 5 of 7

This option moves the legal framework away from the supply of a thing and
towards the supply of a service. Clients are contracting for a service and
some though needs to be given to the amount of service they are buying.
Four man months? 200 velocity points of work?

While this option might sound radical many IT groups and suppliers are
already using service contracts in adjacent areas. For example, IT support
desks and software maintenance contracts are normally written as service
contracts.

Option 4: Money for Nothing, Change for Free
The "Money for Nothing, Change for Free" contract has been documented in
detail by Scrum originator Jeff Sutherland. Rather than construct the
contract as a framework for mini-projects this approach maintains the big
contract - which implicitly suggests some large up front requirements
analysis. However two additional clauses are added to the contract.
The first change in the contract exists to facilitate working on the highest
priority items first and accommodating new work. Customers agree to meet
with suppliers regularly to reprioritise the remaining work. At this time they
may add additional work to the backlog on the understanding that in doing so
some other work might drop off the end and not get done at all. This
increases the incentive to work with and help the supplier and maintenance
customer involvement.

Like a rolling contract the customer pays in regular, say monthly, increments
in response to delivered working software - which also keeps customers
involved, leads to another implicit recommitment and make way for the
second change.

The "money for nothing" provision allows the customer at any stage to
cancel the remaining work and keep what has been created so far. For this
privilege the client pays 20% of the outstanding work.
So if a client cancel’s a 12-month $12m project half way through they will
pay an additional $1.2m in addition to the $6m paid to date. The client saves
the $4.8m they would have needed to spent to see the contract through.

At first sight the supplier looses $4.8m they would have earned. However,
the $1.2m they are paid for doing nothing goes a long way to offset this.
Assuming they redeploy their staff onto other work quickly much of that
$1.2m will be pure profit.
Thus, the mechanisms and incentivise are provided for customers to get
involved, get work done early and save money. Similarly suppliers are
incentivised to accept change, do good work and collect free money.

At the moment examples of this type of contract are thin on the ground.

Combinations
Given these four options it is easy to see some more alternatives by
combining them in different ways. For example, "Change for Free" could be
combined with any of the other three options to create a more potent

(c) Allan Kelly for Software Strategy Ltd. Page 6 of 7

solution. Similarly "No cure, No pay" could be applied to individual
deliveries in option three.

Finances not withstanding options three and four are probably not really very
different. Perhaps the main difference is that option three breaks the
traditional model because it assumes little is know at the start and asks the
customer to repeatedly commit in the positive. Conversely option four works
within the existing model, it keeps the assumption of upfront requirements.
By providing a get-out clause introduces a rolling contract by the back door..

Which ever way contracts are written for Agile teams there are two essential
elements that need to be considered. Firstly, the contracts themselves should
embody the iterative nature of Agile working: do a bit, show a bit, do a bit
more. This is the theme occurs again and again in Agile: time-boxed
iterations, retrospectives, test driven development, etc. etc. It is the PDCA
cycle in action.

Second: contracts should incentivise customers and their representatives to
maintain involvement with the process for the duration. Study after study
has shown continued customer involvement is a key factor in ensuring the
success of IT projects. Whether you are working Agile or not you want
continued customer involvement.

Last, but not least
Customers who have not been exposed to the IT industry's traditional way of
working may find any of these options completely logical. Those who have
worked with IT suppliers in the past may find some of these options
surprising. Our industry has done customers a disservice by propagating the
myth that "if you can write it down, we can build it within a cost and time."

Inevitably some clients will continue to cling to this model. Some suppliers
will find good money in taking advantage of these customers, while others
will loose money by clinging to a model which doesn't work. Neither option
is particularly appealing.

In time, as customers better understand the new ways of approaching IT and
the options available everyone stands to benefit. Right now there are
opportunities for those who can make an early shift to new contract models.
Yes there are risks but there are also rewards.

About the Author
Allan Kelly is London based and works for Software Strategy
where he provides training and consulting in Agile practices and
bespoke development services. He specialises in working with
software product companies, aligning company strategy with
products and processes.

In addition to numerous journal articles and conference
presentations he is the author of Business Patterns for Software
Developers (2012) and Changing Software Development:

(c) Allan Kelly for Software Strategy Ltd. Page 7 of 7

Learning to become Agile (2008). He is also the originator of Retrospective
Dialogue Sheets (www.dialoguesheets.com). On Twitter he is @allankellynet and his
blog is at http://blog.allankelly.net.

About the Software Strategy
Software Strategy Ltd. is UK based
software development consultancy
specialising in Agile development processes
and practices. Software strategy provides
training, consulting and coaching in software
development and offers bespoke software
development.

Clients range from small web development agencies proving custom solutions to the
IT departments of large corporations. Most clients are UK based while others are in
Europe and the USA. Clients include Virgin Atlantic Airways, Thompson-Reuters,
Iris Legal, Research Instruments, Budget Group Insurance, Fugro and many more.

More about Software Strategy at www.softwarestrategy.co.uk, e-mail
contact@softwarestrategy.co.uk or telephone +44 (0) 20 3286 4292.

